MATH V23 LECTURE NOTES (Bowen)
Section 8.2
Homogeneous Linear Systems
The following discussion contains equation numbers. References to equation numbers point to the equation numbers within these notes, and do not correspond to the equation numbering in this section of the textbook, unless an explicit reference to the textbook appears along with the stated equation number.
Terms and concepts. Homogeneous system, square matrix, column vector, scalar, eigenvalue, eigenvector, trivial solution, characteristic equation.

Introduction. We seek to use matrix methods to help us solve linear first-order homogeneous systems of ODEs. A system is homogeneous if none of the equations in the system contains a term that depends explicitly on the independent variable, which is taken as t. (That is, a system is homogeneous if all the occurrences of in equation (3) of section 8.1 of the textbook [Zill] are equal to zero.) In the context of this section, we assume that the independent variable is t, and the dependent variables are either x, y, z (typically if there are only two or three of them), or , , , ,… (typically if there are four or more of them).

Some terminology: If a matrix has the same number of rows and columns, it is called a square matrix. If a matrix has exactly one column, it is sometimes called a column vector (a matrix with one row is sometimes called a row vector). In discussions (such as this) that use column vectors but no row vectors, the phrase column vector is frequently abbreviated to just vector. A scalar is a number (such as 5 or) or a mathematical expression (such as) that is not an element of a matrix or vector.

Some theory: Following in the footsteps of the theory developed in chapter 2 of the textbook for first-order equations with constant coefficients, we assume that the solutions of the system will be linear combinations of functions of the form , where in general is a complex constant. Due to time constraints, however, we will only explore the portions of this section that deal with real values of . As an example, the solution for a system of two linear first-order homogeneous equations involving the dependent variables x and y might look like

		(1)

Because the solutions for x and y contain the same constants , , and the same exponential functions and , it is convenient to write these solutions in matrix form, using , as

		(2)

where the top row of each matrix represents the coefficients of the solution for x, and the bottom row of each matrix represents the coefficients of the solution for y. A complete solution requires us to obtain both the constants and in the exponential functions (in the language of matrices, these are called eigenvalues), and the matrices and (which are called eigenvectors). The prefix eigen- is a German word that means “one’s own”; the German phrase mein eigenes Buch means “my own book.”

To generalize the above expression, it is possible to use to represent and to represent , which leads to the previous equation being written as

[bookmark: Eq_General2x2Solution]		(3)

The set is independent, and therefore constitutes a fundamental set for the system its elements solve. As usual, the coefficients and represent arbitrary constants of integration.
Example: Homework problem #3. We did this problem correctly in lecture, except I overlooked a small detail near the very end, thereby fooling myself into thinking I’d made an error. Here is the proper way to solve this problem. The homogenous system is

[bookmark: Eq_Example1OriginalProblem]		(4)

Because we have already defined , we take the derivative of both sides (where the prime notation is understood to indicate) to write , which we use to represent the left side of the above system (that is, the expressions to the left of the equals signs). We use the definition of the matrix product to write the right side of the system as , where and . The system may therefore be written formally as

[bookmark: Eq_FormalSystemInMatrixForm]		(5)
or in detail as

		(6)

We seek members of the fundamental set, each of which should be similar in structure to the expressions and that were introduced in the paragraph preceding equation (3). Since we don’t yet know either the eigenvalue or the eigenvector, we introduce the eigenvector as and the corresponding eigenvalue as , and write a generic solution as

[bookmark: Eq_FormalSingleSolution]		(7)

from which it follows (since and , and therefore , are constants) that the derivative of the assumed solution is

		(8)
Plugging these last two equations into equation (5) gives

		(9)

Although matrix quantities cannot be divided, it is legal to divide both sides by the scalar . Moving the scalar to the front of the left side yields

		(10)

We would like to factor out the matrix , but the subtraction of the matrix and the scalar is not defined. We introduce the identity matrix , which has the property , to convert the second term from a scalar product to a vector product:

		(11)

Now we may factor out the matrix from both terms. (We must be careful to write on the right side, since it is on the right in both terms above; the reason is that matrix multiplication is not commutative. If and are matrices, then in general . One exception is the identity matrix ; if is a square matrix, then .) The result of the factoring is the homogeneous algebraic system

		(12)

which is just the classic formula used in linear algebra to find the eigenvalues and eigenvectors of matrix . The above equation, if written out in detail for this example, looks like

[bookmark: Eq_EigenvalueSystemForA]		(13)

One obvious solution to this last homogeneous matrix system would be , which is the so-called trivial solution. However, we seek nontrivial (nonzero) solutions for the eigenvector . An important theorem from linear algebra states that nontrivial solutions only exist if the determinant of is equal to zero. So, we compute the determinant of the large matrix in the last step of equation (13) and set it equal to zero:

		(14)
The last equation above is called the characteristic equation; solving it yields the system’s eigenvalues:

[bookmark: Eq_Example1Eigenvalues]		(15)

To find the corresponding eigenvectors (which would complete the solution), we substitute each of these values back into the last step of equation (13), and solve for . Note that the eigenvectors are not unique; if is any eigenvector, then so is any nonzero scalar multiple of the form , which means that the solution of equation (13) will always contain at least one adjustable (arbitrary) matrix element (in this case, either or). The values of the remaining elements may then be written as expressions containing the arbitrary element(s); for example, if were considered arbitrary, we might obtain something like .

Setting up the system of equation (13) by substituting in the first eigenvalue solution gives

		(16)

It’s usually easier to solve this last system by rewriting it as an augmented matrix (in which is invisible, but its presence is implied), rather than as a matrix product. That version of the last system above looks like

		(17)

and we solve by applying a sequence of elementary row operations. In Gauss-Jordan elimination, the goal is normally to use the row operations to generate an identity matrix on the left. We will never get that far in an eigenvalue problem, however, due to the infinite number of possible solutions (eigenvectors) that are scalar multiples of each other, but we go as far as we can until we obtain one or more rows of zeros in the matrix (this will always happen). We start the row operations by multiplying the first row above by , and the second row by 2:

		(18)
Adding the first and second rows, and placing the sum in the second row, achieves the expected row of zeros at the bottom of the matrix:

		(19)
Translating the first row of the matrix back into an algebraic equation gives

		(20)

Treating as an arbitrary constant, we solve for , showing that its value depends on the choice for . (We could also have assumed that was constant; the results would have been the same either way.) We obtain

		(21)

As is arbitrary, we simplify the arithmetic by making the choice , giving . An eigenvector corresponding to is therefore

[bookmark: Eq_Example1Eigenvector1]		(22)

We repeat this process with the second eigenvalue . Returning to the last system of equation (13), we substitute this eigenvalue to obtain

		(23)
The corresponding augmented matrix is

		(24)

and multiplying just the second row by gives

		(25)
which is where I had to stop in lecture, as we had run out of time. What I should have done was to add the first and second rows, and placing the sum into the second row, giving

		(26)
and to convert the first row into an equation, giving

		(27)

The traditional method of setting gives the result

		(28)

but, as is an arbitrary constant, the fraction-averse student might wish to experiment with setting to give the equally valid result

[bookmark: Eq_Example1Eigenvector2]		(29)
We obtain the fundamental set by plugging each eigenvalue and eigenvector we obtained successively into equation (7). The first independent solution, from equations (15) and (22), is

		(30)
and the second independent solution, from equations (15) and (29), is

		(31)
Plugging these last two results into equation (3) gives the general solution, which is

		(32)
If necessary, this result could also be broken down into individual solutions for x and y:

		(33)
[bookmark: _GoBack]This result may be readily verified by substituting these expressions for x and y into the original problem (equation (4)).
Page 8.2-7

image2.wmf
1

x

oleObject48.bin

image46.wmf
tt

ee

ll

l

=

KAK

oleObject49.bin

image47.wmf
t

e

l

oleObject50.bin

image48.wmf
l

oleObject51.bin

image49.wmf
ll

=Þ-=

KAKAKK0

oleObject52.bin

image50.wmf
K

oleObject2.bin

oleObject53.bin

image51.wmf
A

oleObject54.bin

image52.wmf
l

oleObject55.bin

image53.wmf
I

oleObject56.bin

image54.wmf
==

IKKIK

oleObject57.bin

image55.wmf
l

-=

AKIK0

image3.wmf
2

x

oleObject58.bin

image56.wmf
K

oleObject59.bin

oleObject60.bin

image57.wmf
M

oleObject61.bin

image58.wmf
N

oleObject62.bin

image59.wmf
¹

MNNM

oleObject63.bin

oleObject3.bin

image60.wmf
I

oleObject64.bin

oleObject65.bin

image61.wmf
==

IMMIM

oleObject66.bin

image62.wmf
(

)

l

-=

AIK0

oleObject67.bin

image63.wmf
l

oleObject68.bin

image64.wmf
K

image4.wmf
3

x

oleObject69.bin

image65.wmf
A

oleObject70.bin

image66.wmf
{

{

11

22

1

2

4242

10000

55

01000

22

22

42

0

5

0

2

2

kk

kk

k

k

l

l

l

l

l

l

l

-

éù

éù

êú

--

æöæö

êú

æöæö

æöæöæöæö

êú

ç÷ç÷

-×=Þ-×=

êú

ç÷ç÷

ç÷ç÷ç÷ç÷

êú

ç÷ç÷

--

èøèøèøèø

èøèø

êú

êú

èøèø

êú

ëû

êú

ëû

--

æö

æö

æö

ç÷

Þ×=

ç÷

ç÷

ç÷

--

èø

èø

èø

0

K

A

II

AI

12314243

14243

1442443

oleObject71.bin

image67.wmf
1

2

0

0

k

k

æö

æö

==

ç÷

ç÷

èø

èø

0

oleObject72.bin

image68.wmf
1

2

k

k

æö

ç÷

èø

oleObject73.bin

image69.wmf
(

)

l

-

AI

oleObject4.bin

oleObject74.bin

image70.wmf
(

)

(

)

(

)

(

)

42

5

det0det04220

5

2

2

2

l

lll

l

--

æö

æö

ç÷

-=Þ=Þ-----=

ç÷

ç÷

--

èø

èø

AI

oleObject75.bin

image71.wmf
(

)

(

)

22

12

84250230310

3;1

lllllll

ll

-+-++=Þ+-=Þ+-=

=-=

oleObject76.bin

image72.wmf
i

l

oleObject77.bin

oleObject78.bin

oleObject79.bin

image73.wmf
11

22

kck

c

kck

æöæö

=

ç÷ç÷

èøèø

image5.wmf
4

x

oleObject80.bin

oleObject81.bin

image74.wmf
1

k

oleObject82.bin

image75.wmf
2

k

oleObject83.bin

image76.wmf
2

k

oleObject84.bin

image77.wmf
12

7

kk

=-

oleObject85.bin

oleObject5.bin

image78.wmf
1

3

l

=-

oleObject86.bin

image79.wmf
11

22

43212

00

55

00

235

22

kk

kk

-+-

æöæö

æöæö

æöæö

ç÷ç÷

×=Þ×=

ç÷ç÷

ç÷ç÷

ç÷ç÷

-+-

èøèø

èøèø

èøèø

oleObject87.bin

oleObject88.bin

image80.wmf
120

5

50

2

-

æö

ç÷

ç÷

-

èø

oleObject89.bin

image81.wmf
5

-

oleObject90.bin

image82.wmf
5100

5100

-

æö

ç÷

-

èø

image6.wmf
1

c

oleObject91.bin

image83.wmf
5100

000

-

æö

ç÷

èø

oleObject92.bin

image84.wmf
12

5100

kk

-=

oleObject93.bin

image85.wmf
2

k

oleObject94.bin

image86.wmf
1

k

oleObject95.bin

oleObject96.bin

oleObject6.bin

image87.wmf
1

k

oleObject97.bin

image88.wmf
1212

5102

kkkk

=Þ=

oleObject98.bin

oleObject99.bin

image89.wmf
2

1

k

=

oleObject100.bin

image90.wmf
12

22

kk

==

oleObject101.bin

oleObject102.bin

image7.wmf
3

t

e

image91.wmf
1

1

2

2

1

k

k

æö

æö

==

ç÷

ç÷

èø

èø

K

oleObject103.bin

image92.wmf
2

1

l

=

oleObject104.bin

image93.wmf
11

22

41252

00

55

00

211

22

kk

kk

æöæö

æöæö

æöæö

ç÷ç÷

×=Þ×=

ç÷ç÷

ç÷ç÷

ç÷ç÷

èøèø

èøèø

èøèø

oleObject105.bin

image94.wmf
520

5

10

2

-

æö

ç÷

ç÷

-

èø

oleObject106.bin

image95.wmf
2

-

oleObject107.bin

oleObject7.bin

image96.wmf
520

520

-

æö

ç÷

-

èø

oleObject108.bin

image97.wmf
520

000

-

æö

ç÷

èø

oleObject109.bin

image98.wmf
121212

2

52052

5

kkkkkk

-+=Þ-=-Þ=

oleObject110.bin

oleObject111.bin

image99.wmf
2

1

5

2

2

1

k

k

æö

æö

==

ç÷

ç÷

èø

èø

K

oleObject112.bin

image100.wmf
2

k

image8.wmf
t

e

l

oleObject113.bin

image101.wmf
2

5

k

=

oleObject114.bin

image102.wmf
1

2

2

2

5

k

k

æö

æö

==

ç÷

ç÷

èø

èø

K

oleObject115.bin

image103.wmf
1

3

11

2

1

t

t

ee

l

-

æö

==

ç÷

èø

XK

oleObject116.bin

image104.wmf
2

22

2

5

t

t

ee

l

æö

==

ç÷

èø

XK

oleObject117.bin

image105.wmf
3

112212

22

15

tt

cccece

-

æöæö

=+=+

ç÷ç÷

èøèø

XXX

oleObject8.bin

oleObject118.bin

image106.wmf
3

12

3

12

22

5

tt

tt

xcece

ycece

-

-

=+

=+

oleObject119.bin

image9.wmf
l

oleObject9.bin

image10.wmf
l

oleObject10.bin

image11.wmf
(

)

(

)

26

12

26

12

3

5

tt

tt

xtcece

ytcece

-

-

=+

=-+

oleObject11.bin

image12.wmf
1

c

oleObject12.bin

image13.wmf
2

c

oleObject13.bin

image14.wmf
2

t

e

-

oleObject14.bin

image15.wmf
6

t

e

oleObject15.bin

image16.wmf
(

)

(

)

xt

yt

æö

=

ç÷

èø

X

oleObject16.bin

image17.wmf
26

12

13

15

tt

cece

-

æöæö

=+

ç÷ç÷

-

èøèø

X

oleObject17.bin

image18.wmf
1

2

l

=-

oleObject18.bin

image19.wmf
2

6

l

=

oleObject19.bin

image20.wmf
1

1

æö

ç÷

-

èø

oleObject20.bin

image21.wmf
3

5

æö

ç÷

èø

oleObject21.bin

image22.wmf
1

X

oleObject22.bin

image23.wmf
2

1

1

t

e

-

æö

ç÷

-

èø

oleObject23.bin

image24.wmf
2

X

oleObject24.bin

image25.wmf
6

3

5

t

e

æö

ç÷

èø

oleObject25.bin

image26.wmf
1122

cc

=+

XXX

oleObject26.bin

image27.wmf
{

}

12

,

XX

oleObject27.bin

image28.wmf
1

c

oleObject28.bin

image29.wmf
2

c

oleObject29.bin

image30.wmf
42

5

2

2

dx

xy

dt

dy

xy

dt

=-+

=-+

oleObject30.bin

image31.wmf
x

y

æö

=

ç÷

èø

X

oleObject31.bin

image32.wmf
d

dt

oleObject32.bin

image33.wmf
dx

dt

dy

dt

æö

ç÷

¢

=

ç÷

ç÷

ç÷

èø

X

oleObject33.bin

image34.wmf
AX

oleObject34.bin

image35.wmf
42

5

2

2

-

æö

ç÷

=

ç÷

-

èø

A

oleObject35.bin

oleObject36.bin

image36.wmf
¢

=

XAX

image1.wmf
(

)

{

}

k

ft

oleObject37.bin

image37.wmf
{

{

42

5

2

2

dx

x

dt

dyy

dt

¢

æö

-

æö

ç÷

æö

ç÷

=

ç÷

ç÷

ç÷

-

ç÷

èø

ç÷

èø

èø

A

X

X

14243

oleObject38.bin

oleObject39.bin

oleObject40.bin

image38.wmf
1

2

k

k

æö

=

ç÷

èø

K

oleObject41.bin

image39.wmf
l

oleObject42.bin

image40.wmf
1

2

tt

k

ee

k

ll

æö

==

ç÷

èø

XK

oleObject1.bin

oleObject43.bin

image41.wmf
1

k

oleObject44.bin

image42.wmf
2

k

oleObject45.bin

image43.wmf
K

oleObject46.bin

image44.wmf
X

oleObject47.bin

image45.wmf
1

2

tt

k

ee

k

ll

ll

æö

¢

==

ç÷

èø

XK

