MATH V23 LECTURE NOTES (Bowen)
Section 7.3
Operational Properties I
The following discussion contains equation numbers. References to equation numbers point to the equation numbers within these notes, and do not correspond to the equation numbering in this section of the textbook, unless an explicit reference to the textbook appears along with the stated equation number.
Terms and concepts. Horizontal shift, first translation theorem, unit (Heaviside) step function, second translation theorem.

Introduction. The purpose of this section is to find theorems to help us calculate Laplace transforms for certain classes of functions that are difficult or impossible to integrate using the definition from Definition 7.1.1 on page 279 of the textbook [Zill]. The motivation, besides saving ourselves the labor and tedium of integration, is to expand our tables of Laplace and inverse Laplace transforms (Theorems 7.1.1 and 7.2.1 in the textbook, respectively) to enable solving a greater variety of ODEs.

Aside on horizontal shifts (translations) of the graph of a function. You should recall from your precalculus course that if it is desired to shift the graph of a function horizontally toward the right (that is, parallel to the x-axis) by a distance of h units, it is sufficient to replace each and every occurrence of in the equation by , creating a new (shifted) function . (Leftward shifts are obtained by using a negative value of .) For example, if the function is , a parabola with vertex at , it is possible to move the vertex three units to the right (that is, to) by creating a new function .

Because a Laplace transform is a function of the independent variable s, the translation of a Laplace transform function to the right, by a distance a along the s-axis (where a is a constant), would be written as , using the same reasoning as in the preceding paragraph (but with a different variable and constant). As the Laplace transform is defined for each value of s through the integral in Definition 7.1.1 in the textbook, the shifted function would be obtained by replacing with in the defining integral as well. We therefore obtain through

[bookmark: Eq_ShiftedLaplaceTransform]		(1)

which is the same as Definition 7.1.1 in the textbook, except we have generalized it by substituting for . Note that the limits of integration, being values of t rather than values of s, do not change from what they were in the definition of .

Translation on the s-axis (First Translation Theorem). Suppose that is one of the functions listed in the table of Laplace transforms in Theorem 7.1.1 in the textbook (or any other function whose Laplace transform is already known). Also let a be any real constant. Then it is straightforward to show (using Definition 7.1.1 from the textbook) that the Laplace transform of the function is

		(2)

where the step from the last expression on the first line to the right-hand expression on the second line is obtained via equation (1). In short, multiplying any function by causes its Laplace transform to shift by a distance a (rightward if , and leftward if) along the s-axis. This result is the First Translation Theorem (Theorem 7.3.1 in the textbook).

Example: finding a Laplace transform using the First Translation Theorem. Let us find the Laplace transform of without performing any integration. We define and to obtain the form . We also note (using the linearity of the Laplace transform, and Theorem 7.1.1(a) and 7.1.1(b) from the textbook) that

		(3)

Then we find :

		(4)
Because it is easier to find the inverse Laplace transform of fractions having constant numerators (that is, numerators not containing the variable s), we will usually not use the LCD to combine this last result into a single fraction, but just leave it as it is above.
Inverse Laplace transforms using the First Translation Theorem. Writing the First Translation Theorem in reverse, we obtain

		(5)

provided that . To use this in practice, it is often necessary to manipulate a function of until it looks like a function of before taking the inverse transform. This is illustrated in the next example.
Example: finding the inverse Laplace transform of a rational expression containing repeated factors in the denominator. In the previous section of the textbook, we used partial fractions to find the inverse Laplace transform of a rational expression when there were no repeated factors in the denominator. That method would not be practical if repeated factors were present. However, the First Translation Theorem now makes such an undertaking feasible.

Let us find the inverse Laplace transform of . The denominator is not factorable, but any quadratic can be partially factored by completing the square, allowing us to write (verify by multiplying out the denominator and comparing to the original expression for). The in the denominator suggests that this is a Laplace transform that has been shifted by (since . We therefore attempt to rewrite each s in the numerator so it also looks like . Because the numerator is linear, we may write

		(6)

where a and b are undetermined real constants, as our first attempt to get the numerator to look as though it also contains . It requires only straightforward algebra (matching coefficients of s and constants on the left side of the above equation to their counterparts on the right side) to obtain specific values for a and b:

		(7)

This further refinement allows us to write as

		(8)

We have achieved our intermediate goal, which was to rewrite so that every occurrence of has been manipulated to look like , but without changing the function, except in its appearance. We now ask the following question: If represents some other function that has been shifted to the left on the s-axis by units to obtain , what was the unshifted version of ? The answer can always be obtained by changing back to , from which we obtain

		(9)

Obtaining is useful because (1) the inverse Laplace transform of is relatively easy to find, and (2) since is related to through the horizontal shift

[bookmark: Eq_InverseTransformShiftRelationship]		(10)

we may use the First Translation Theorem to leverage this into finding the inverse Laplace transform of . We proceed with these two calculations, starting with the inverse Laplace transform of :

		(11)

Let , so ; then use Theorem 7.2.1(d) and Theorem 7.2.1(e) from the textbook to find the inverse transform :

		(12)

Now we leverage equation (10) and (setting) the First Translation Theorem to find the inverse Laplace transform of :

		(13)

The unit (Heaviside) step function. Many mechanical and electronic processes can be modeled by the unit step function, also known as the Heaviside step function. The independent variable for this function is typically time t. This function has two possible values: (off) and (on). If the function transitions from “off” (0) to “on” (1) at time , then it is written as . This is a piecewise function, with

[bookmark: Eq_HeavisideStepDefinition]		(14)

Depending on the application, the domain of this function may be either (in which case a is assumed positive) or (in which case a may take on any real value). For practical reasons, only the first definition is used with Laplace transforms, so it is safe to assume that in this section. See Figure 7.3.2 on page 298 of the textbook for a representative graph of this function; note that the exact behavior of the graph depends on the value of a. Some authors notate this function as .

Most commonly, the Heaviside step function is multiplied by another function . The product is equal to just the value of , provided that ; however, the step function “zeros out” toward the left side of its graph (for), as illustrated in Figure 7.3.3 and Figure 7.3.4 on page 298 of the textbook. If it is also desired to “zero out” on the right end of the graph as well (that is, for), we write ; this can model turning a system on at time a, then turning it off again at a later time b.

Translation on the t-axis (Second Translation Theorem). Suppose we know the Laplace transform of a function , and we would like to find the Laplace transform of . Because is a piecewise function, we may rewrite the textbook’s Definition 7.1.1 as a piecewise integral, with the break between the pieces occurring at , as suggested by the definition of from equation (14):

		(15)

For the first integral in the last line above, , and for the second integral, , so this simplifies to

		(16)

Apply the u-substitution , , (remembering to change the limits of integration) to obtain

		(17)

As both a and s are constants (technically, only u is a variable), the factor may be moved outside the integral, leaving

[bookmark: Eq_SecondTranslationTheorem]		(18)

This result is the Second Translation Theorem. As a corollary, note that if (for which, from Theorem 7.1.2,), and we turn this function “on” at instead of , the new Fourier transform is . But this is just the Heaviside step function, so

		(19)

Equation (18) is not always easy to use, as the function multiplied with the Heaviside step function is often not in the shifted form . To find the Laplace transform of a product in the form , it is possible to replicate the derivation leading to equation (18) with replacing . At the u-substitution step, becomes , and the alternative form of the Second Translation Theorem becomes

[bookmark: Eq_SecondTranslationTheoremAlternative]		(20)
For inverse Laplace transforms, equation (18) allows us to rewrite the Second Translation Theorem as

[bookmark: Eq_SecondTranslationTheoremInverse]		(21)

provided that .

Example: Laplace transform involving a step function. Find the Laplace transform of . We note that the step function “turns on” at time , but the factor has not been shifted to this same start time. We have two alternatives; Method 1 would be to use a trig identity to rewrite as a shifted quantity to match the step function, then apply equation (18); and Method 2 would be to use the alternative formula of equation (20). Let’s try it both ways to compare results.

Method 1. Modify using the identity to obtain . Both functions are now shifted by , so equation (18) applies. Using this equation and Theorem 7.1.1(e) from the textbook (with and) gives

		(22)

Method 2. Use equation (20) directly, with and :

		(23)
Both methods give the same result, as expected.

Example: Inverse Laplace transform involving a step function. Find the inverse Laplace transform of . From the left side of equation (21), we see that we need to convert this expression into the form . This is readily accomplished if we set and . Unfortunately, there are no inverse transforms for listed in Theorem 7.2.1 in the textbook, so we manipulate into a more manageable form using partial fractions. We obtain

		(24)

Setting gives ; setting gives , so ; and setting gives , so and . The partial fractions expression above becomes

		(25)
The expression for the inverse transform becomes

		(26)

Define , , and ; then

		(27)
which, according to equation (21), simplifies to

		(28)
From Theorem 7.2.1 in the textbook, we find that

		(29)
Substituting these results into the expression for the inverse Laplace transform gives

		(30)
[bookmark: _GoBack]The textbook gives additional examples showing how these transforms and inverse transforms may be used to solve differential equations, including IVPs and boundary-value problems.
Page 7.3-8

image2.wmf
(

)

fx

image44.wmf
(

)

253

sasb

+=++

oleObject50.bin

oleObject51.bin

image45.wmf
(

)

25323251

sasababb

+=++®=®+=®=-

oleObject52.bin

image46.wmf
(

)

Fs

oleObject53.bin

image47.wmf
(

)

(

)

(

)

(

)

(

)

(

)

222

2313

1

2

325325325

ss

Fs

sss

+-+

==-

++++++

oleObject54.bin

image48.wmf
(

)

Fs

oleObject2.bin

oleObject55.bin

image49.wmf
s

oleObject56.bin

image50.wmf
(

)

3

s

+

oleObject57.bin

image51.wmf
(

)

Fs

oleObject58.bin

image52.wmf
(

)

Gs

oleObject59.bin

image53.wmf
3

-

image3.wmf
x

oleObject60.bin

oleObject61.bin

image54.wmf
(

)

Gs

oleObject62.bin

image55.wmf
(

)

3

s

+

oleObject63.bin

image56.wmf
s

oleObject64.bin

image57.wmf
(

)

22

1

2

2525

s

Gs

ss

=-

++

oleObject65.bin

oleObject3.bin

oleObject66.bin

oleObject67.bin

oleObject68.bin

image58.wmf
(

)

Fs

oleObject69.bin

image59.wmf
(

)

(

)

3

FsGs

=+

oleObject70.bin

oleObject71.bin

image60.wmf
(

)

gt

oleObject72.bin

image4.wmf
(

)

xh

-

oleObject73.bin

image61.wmf
(

)

(

)

1111

2222

11

22

25252525

ss

gtGs

ssss

éùéùéù

==-=-

éù

ëû

êúêúêú

++++

ëûëûëû

LLLL

oleObject74.bin

image62.wmf
5

k

=

oleObject75.bin

image63.wmf
2

25

k

=

oleObject76.bin

oleObject77.bin

image64.wmf
(

)

(

)

(

)

(

)

(

)

(

)

1111

22222222

111

222cossin

1

2cos5sin5

5

ssk

gtktkt

skskskkskk

gttt

éùéùéùéù

=-=-=-

êúêúêúêú

++++

ëûëûëûëû

=-

LLLL

oleObject78.bin

oleObject4.bin

image65.wmf
3

a

=-

oleObject79.bin

image66.wmf
(

)

Fs

oleObject80.bin

image67.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

111

3

1

32cos5sin5

5

1

2cos5sin5

5

atat

t

ftFsGsGsaegtett

ftett

-

æö

==+=-==-

éùéùéù

ç÷

ëûëûëû

èø

æö

=-

ç÷

èø

LLL

oleObject81.bin

image68.wmf
0

y

=

oleObject82.bin

image69.wmf
1

y

=

oleObject83.bin

image5.wmf
(

)

(

)

gxfxh

=-

image70.wmf
ta

=

oleObject84.bin

image71.wmf
(

)

ta

-

U

oleObject85.bin

image72.wmf
(

)

(

)

(

)

0if , that is, if the argument is negat

ive

1if , that is, if the argument is nonne

gative

tata

ta

tata

<-

ì

ï

-=

í

³-

ï

î

U

oleObject86.bin

image73.wmf
[

)

0,

t

Î¥

oleObject87.bin

image74.wmf
(

)

,

t

Î-¥¥

oleObject88.bin

oleObject5.bin

image75.wmf
0

a

>

oleObject89.bin

image76.wmf
(

)

Hta

-

oleObject90.bin

image77.wmf
(

)

gt

oleObject91.bin

image78.wmf
(

)

(

)

gtta

-

U

oleObject92.bin

image79.wmf
(

)

gt

oleObject93.bin

image6.wmf
h

image80.wmf
ta

³

oleObject94.bin

oleObject95.bin

image81.wmf
ta

<

oleObject96.bin

oleObject97.bin

image82.wmf
tba

³>

oleObject98.bin

image83.wmf
(

)

(

)

(

)

gttatb

éù

ëû

UU

oleObject99.bin

oleObject6.bin

oleObject100.bin

image84.wmf
(

)

ft

oleObject101.bin

image85.wmf
(

)

(

)

ftata

--

U

oleObject102.bin

oleObject103.bin

image86.wmf
ta

=

oleObject104.bin

oleObject105.bin

image87.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

0

0

st

a

stst

a

ftataeftatadt

eftatadteftatadt

¥

-

¥

--

--=--

éù

ëû

=--+--

ò

òò

LUU

UU

image7.wmf
(

)

2

fxx

=

oleObject106.bin

image88.wmf
(

)

0

ta

-=

U

oleObject107.bin

image89.wmf
(

)

1

ta

-=

U

oleObject108.bin

image90.wmf
(

)

(

)

(

)

(

)

0

0

a

stst

aa

ftatadteftadteftadt

¥¥

--

--=+-=-

éù

ëû

òòò

LU

oleObject109.bin

image91.wmf
uta

=-

oleObject110.bin

image92.wmf
tua

=+

oleObject7.bin

oleObject111.bin

image93.wmf
dudt

=

oleObject112.bin

image94.wmf
(

)

(

)

(

)

(

)

(

)

00

sua

suas

ftataefudueefudu

¥¥

-+

--

--==

éù

ëû

òò

LU

oleObject113.bin

image95.wmf
as

e

-

oleObject114.bin

image96.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

0

assuas

as

ftataeefuduefu

ftataeFs

¥

-

--==

éùéù

ëûëû

--=

éù

ëû

ò

LUL

LU

oleObject115.bin

image97.wmf
(

)

1

ft

=

image8.wmf
(

)

0,0

oleObject116.bin

image98.wmf
(

)

1

Fs

s

=

oleObject117.bin

image99.wmf
ta

=

oleObject118.bin

image100.wmf
0

t

=

oleObject119.bin

image101.wmf
(

)

1

as

asas

e

eFse

ss

-

--

=×=

oleObject120.bin

image102.wmf
(

)

as

e

ta

s

-

-=

éù

ëû

LU

oleObject8.bin

oleObject121.bin

image103.wmf
(

)

fta

-

oleObject122.bin

image104.wmf
(

)

(

)

gtta

-

U

oleObject123.bin

image105.wmf
(

)

gt

oleObject124.bin

oleObject125.bin

image106.wmf
(

)

gt

oleObject126.bin

image9.wmf
(

)

3,0

image107.wmf
(

)

gua

+

oleObject127.bin

image108.wmf
(

)

(

)

(

)

as

gttaegta

-

-=+

éùéù

ëûëû

LUL

oleObject128.bin

image109.wmf
(

)

(

)

(

)

1

as

eFsftata

--

éù

=--

ëû

LU

oleObject129.bin

oleObject130.bin

image110.wmf
(

)

sin

2

fttt

p

æö

=-

ç÷

èø

U

oleObject131.bin

image111.wmf
2

t

p

=

oleObject9.bin

oleObject132.bin

image112.wmf
sin

t

oleObject133.bin

image113.wmf
sin

t

oleObject134.bin

image114.wmf
(

)

ft

oleObject135.bin

image115.wmf
cossin

2

tt

p

æö

-=

ç÷

èø

oleObject136.bin

image116.wmf
(

)

cos

22

fttt

pp

æöæö

=--

ç÷ç÷

èøèø

U

image10.wmf
(

)

(

)

(

)

2

33

gxfxx

=-=-

oleObject137.bin

image117.wmf
2

a

p

=

oleObject138.bin

image118.wmf
1

k

=

oleObject139.bin

image119.wmf
(

)

cos

ftt

=

oleObject140.bin

image120.wmf
[

]

22

2

sincoscos

2221

ss

s

ttttete

s

pp

ppp

--

éùéù

æöæöæö

-=--==×

ç÷ç÷ç÷

êúêú

+

èøèøèø

ëûëû

LULUL

oleObject141.bin

image121.wmf
(

)

sin

gtt

=

oleObject10.bin

oleObject142.bin

oleObject143.bin

image122.wmf
[

]

222

2

sinsincos

221

sss

s

ttetete

s

ppp

pp

éùéù

æöæö

-=+==×

ç÷ç÷

êúêú

+

èøèø

ëûëû

LULL

oleObject144.bin

image123.wmf
(

)

2

2

1

s

e

ss

-

-

oleObject145.bin

image124.wmf
(

)

as

eFs

-

oleObject146.bin

image125.wmf
2

a

=

oleObject147.bin

image11.wmf
(

)

(

)

ftFs

=

éù

ëû

L

image126.wmf
(

)

(

)

2

1

1

Fs

ss

=

-

oleObject148.bin

image127.wmf
(

)

Fs

oleObject149.bin

oleObject150.bin

image128.wmf
(

)

(

)

(

)

(

)

22

22

1

00111

11

ABC

FsssAssBsCs

sssss

==++®++=-+-+

--

oleObject151.bin

image129.wmf
1

s

=

oleObject152.bin

image130.wmf
1

C

=

oleObject11.bin

oleObject153.bin

image131.wmf
0

s

=

oleObject154.bin

image132.wmf
1

B

=-

oleObject155.bin

image133.wmf
1

B

=-

oleObject156.bin

image134.wmf
2

s

=

oleObject157.bin

image135.wmf
12421423

ABCAA

=++=-+=+

image12.wmf
(

)

Fs

oleObject158.bin

image136.wmf
22

A

=-

oleObject159.bin

image137.wmf
1

A

=-

oleObject160.bin

image138.wmf
(

)

(

)

222

1111111

111

Fs

ssssssss

--

==++=--+

oleObject161.bin

image139.wmf
(

)

2

112121212

222

111111

111

s

ssss

e

eeee

ssssssss

-

éù

éùéùéùéù

æöæöæöæö

=--+=--+

êú

ç÷ç÷ç÷ç÷

êúêúêúêú

èøèøèøèø

ëûëûëûëû

ëû

LLLLL

oleObject162.bin

image140.wmf
(

)

1

1

Fs

s

=

oleObject12.bin

oleObject163.bin

image141.wmf
(

)

2

2

1

Fs

s

=

oleObject164.bin

image142.wmf
(

)

3

1

1

Fs

s

=

-

oleObject165.bin

image143.wmf
(

)

(

)

(

)

(

)

2

1111

123

2

1

s

asasas

e

eFseFseFs

ss

-

éù

éùéùéù

=--+

êú

ëûëûëû

-

ëû

LLLL

oleObject166.bin

image144.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

2

1

123

2

1

s

e

ftataftataftata

ss

-

-

éù

=------+--

êú

-

ëû

LUUU

oleObject167.bin

image145.wmf
(

)

(

)

(

)

(

)

(

)

(

)

11

11

11

22

2

11

33

1

1;

1

; and

1

1

t

ftFs

s

ftFst

s

ftFse

s

--

--

--

éù

===

éù

ëû

êú

ëû

éù

===

éù

ëû

êú

ëû

éù

===

éù

ëû

êú

-

ëû

LL

LL

LL

image13.wmf
(

)

Fsa

-

oleObject168.bin

image146.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

2

122

2

1222212

1

s

tt

e

tttetett

ss

-

éù

=-----+-=-+-

êú

-

ëû

LUUUU

oleObject169.bin

oleObject13.bin

oleObject14.bin

image14.wmf
s

oleObject15.bin

image15.wmf
(

)

sa

-

oleObject16.bin

oleObject17.bin

image16.wmf
(

)

(

)

(

)

0

sat

Fsaeftdt

¥

--

-=

ò

oleObject18.bin

oleObject19.bin

oleObject20.bin

oleObject21.bin

image17.wmf
(

)

ft

oleObject22.bin

image18.wmf
(

)

(

)

Fsft

=

éù

ëû

L

oleObject23.bin

image19.wmf
(

)

at

eft

×

oleObject24.bin

image20.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

000

, or

sat

atstatstat

at

efteeftdteftdteftdt

eftFsa

¥¥¥

--

--+

éù

×===

ëû

éù

×=-

ëû

òòò

L

L

oleObject25.bin

image21.wmf
(

)

ft

oleObject26.bin

image22.wmf
at

e

oleObject27.bin

image23.wmf
0

a

>

oleObject28.bin

image24.wmf
0

a

<

oleObject29.bin

image25.wmf
(

)

Gs

oleObject30.bin

image26.wmf
(

)

(

)

2

2

1

t

gtet

=-

oleObject31.bin

image27.wmf
(

)

(

)

2

1

ftt

=-

oleObject32.bin

image28.wmf
2

a

=

oleObject33.bin

image29.wmf
(

)

(

)

at

gteft

=×

oleObject34.bin

image30.wmf
(

)

(

)

(

)

[

]

[

]

(

)

2

22

2111

32

2!1!1

121212

221

Fsftttttt

sss

Fs

sss

++

éù

éùéù

==-=-+=-+=-+

éù

ëû

ëûëû

ëû

=-+

LLLLLL

oleObject35.bin

image31.wmf
(

)

Gs

oleObject36.bin

image32.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

32

2

2

32

221

221

1

2

22

at

t

GsgteftFsa

sa

sasa

Gset

s

ss

éù

==×=-=-+

éù

ëû

ëû

-

--

éù

=-=-+

ëû

-

--

LL

L

oleObject37.bin

image33.wmf
(

)

(

)

1

at

Fsaeft

-

-=×

éù

ëû

L

oleObject38.bin

image34.wmf
(

)

(

)

1

Fsft

-

=

éù

ëû

L

image1.wmf
(

)

(

)

ftFs

=

éù

ëû

L

oleObject39.bin

image35.wmf
s

oleObject40.bin

image36.wmf
(

)

sa

-

oleObject41.bin

image37.wmf
(

)

ft

oleObject42.bin

image38.wmf
(

)

2

25

634

s

Fs

ss

+

=

++

oleObject43.bin

image39.wmf
(

)

(

)

2

25

325

s

Fs

s

+

=

++

oleObject1.bin

oleObject44.bin

image40.wmf
(

)

Fs

oleObject45.bin

image41.wmf
(

)

3

s

+

oleObject46.bin

image42.wmf
3

-

oleObject47.bin

image43.wmf
(

)

(

)

(

)

33

ss

+=--

oleObject48.bin

oleObject49.bin

