MATH V23 LECTURE NOTES (Bowen)
Section 6.3
Series Solutions About Singular Points
The following discussion contains equation numbers. References to equation numbers point to the equation numbers within these notes, and do not correspond to the equation numbering in this section of the textbook, unless an explicit reference to the textbook appears along with the stated equation number.
Terms and concepts. Regular singular point, irregular singular point, method of Frobenius, index, indicial equation.
Introduction. In the previous section, we found solutions to the standard form of the homogeneous second-order equation

[bookmark: Eq_HomogeneousStandardForm]		(1)
that were power series; that is, series of the form

[bookmark: Eq_GenericTaylorExpansion]		(2)

where c was a constant value of x about which the Taylor series was expanded, and the coefficients were determined through a recurrence relation. To ensure that a Taylor expansion existed, we required and be analytic (infinitely differentiable) at , in which case we said that was an ordinary point.

In this section, we address the case in which either or is not analytic at ; that is, is a singular point. Singular points come in two flavors, regular singular points and irregular singular points; these will be defined in more detail shortly. Equations containing irregular singular points have no reliable means of solution; this section will therefore focus on solutions near regular single points only. When seeking series solutions at regular singular points, it is possible that we may find only one series solution rather than two. In such cases, we may appeal to the method of reduction of order to find the second solution, as we studied in section 4.2 of the textbook [Zill], or use additional methods as suggested in this section.

Classification of singular points. Starting with equation (1), a regular singular point is any singular point for which the expressions

[bookmark: Eq_RegularSingularTest1]	 and 	(3)

are both analytic at , even though or are not analytic. If a singular point fails to satisfy either of these conditions, then it is an irregular singular point.

An alternative definition (not provided in the textbook, but it might make your homework easier) is that a regular singular point is a singular point for which the two-sided limits

[bookmark: Eq_RegularSingularTest2]	 and 	(4)

both exist. If either limit fails to exist (in this context, a value of constitutes failure to exist), then is an irregular singular point. Depending on the functions and , a single equation may have both regular and irregular singular points, or it may have no singular points at all.
Example: Finding and classifying singular points. Consider the second-order homogeneous ODE

		(5)

(If you are not completely comfortable with parentheses, the polynomial at the front of this equation is multiplying only the term.) Before starting to find and test singular points, we note that this is not in standard form, so we divide both sides by the coefficient of the second-derivative term to obtain the standard equation

		(6)
which gives us

	 and 	(7)

By factoring either denominator above to obtain , we see that and are both undefined (therefore not differentiable, and therefore not analytic) at and ; these are the singular points of the equation. (All other real values of x are regular points, whose solutions were addressed in the previous section. In an advanced course, we would also investigate whether were singular points, if a solution valid for very large x were desired, but that is not covered in this course.)

Let us test the singular point to determine whether it is regular or irregular. If we use the textbook’s definition of regular, we build and test the expressions designated in equation (3):

		(8)
and

	

To complete the test of , we evaluate and . If both are defined, they are analytic at , and the point is regular; if either is undefined, the undefined one is not analytic, and the point is irregular. We find

		(9)

		(10)

Both and are defined, so is a regular singular point.
If we use the alternative definition (the one involving limits) we obtain (starting with equations (4))

[bookmark: Eq_ODEExampleAlpha]		(11)
and

[bookmark: Eq_ODEExampleBeta]		(12)

Since both and exist, we again identify as a regular singular point.

We now test the other singular point . Using the limit method gives

	(13)
and

		(14)

The limit does not exist, so we conclude that is an irregular singular point. The conscientious student should independently verify that the textbook’s definition of regular singular point is also not satisfied for . If we had been paying close attention, we could have skipped the test of , because , being undefined, already disqualified as a regular singular point.

Solution about a regular singular point: method of Frobenius. This method of solution is similar in many respects to the solution about an ordinary point; we set up a generic series to represent the solution y, compute the first and second derivatives of the series to represent and , and substitute these into the equation to determine the coefficients of each term of the solution. Theorem 6.3.1 (by Frobenius) on page 254 of the textbook gives the form of the series solution as

		(15)
which can also be abbreviated as

[bookmark: Eq_GeneralFrobeniusSolution]		(16)
if we bring the leading factor inside the sum, and apply exponent properties. The Frobenius solution (above) comes with some caveats; namely:
1.
In addition to finding the coefficients , we must find the value of the exponent r on the factor in front of the summation, which will generally be a real constant. (Details of how to find r will be coming shortly…and there is a shortcut.)
2. If r is either negative or a fraction, then the resulting series no longer qualifies as a power series (although it likely still represents a solution). To be safe, we will start calling the solution a “series” rather than a “power series,” just in case this happens.
3. The method might obtain two separate series (that is, two fundamental solutions) for us, but it guarantees us only one. If it only found one, then other methods would be needed to find the second fundamental solution. (The second solution is still out there; it’s just that the Frobenius method wouldn’t help us find it). Example 4 on page 258 of the textbook explicitly deals with that case.
4.

We cannot be assured of finding a solution at the regular singular point , only near it. If we plug in into the Frobenius solution above, we obtain either (for nonnegative r) or (for negative r) as the sum of the series, so even if there were a solution at , the above summation formula would not correctly represent it. However, the Frobenius theorem also guarantees us that there will always be at least a small (that is, nonzero) radius of convergence about for the series solution(s) we obtain; just keep in mind that “nonzero” might mean “one-billionth.” So, in some (possibly very small) neighborhood of x values located near , we are guaranteed that our series solution(s) will be valid (that is, it will converge and represent a solution to the ODE).
5.

The method is efficient only if is the regular singular point. The calculations become nearly intractable for other values of x. If you encounter an equation for which you wish to expand about a nonzero regular singular point, it is generally worth the effort to shift everything horizontally by inventing a new variable (where h is the value of the regular singular point) and plugging it into the equation so that the regular singular point of the shifted equation is .
Example: Applying the method of Frobenius. We illustrate the method by using it to solve the equation

[bookmark: Eq_ODEExample1]		(17)
We rewrite this in standard form to begin the identification of singular points:

		(18)
We identify

	 and 	(19)

from which it is clear that is a singular point (it makes both denominators zero). We use the limit-based definition of “regular singular point” to determine whether is regular:

[bookmark: Eq_ODEExample1Alpha]		(20)
and

[bookmark: Eq_ODEExample1Beta]		(21)

Both and exist, so is a regular singular point.
We differentiate both sides of the general Frobenius solution (equation (16)) twice, using the power rule, and treating n and r as constants (they are!) to prepare to insert the necessary quantities into equation (17), obtaining

		(22)

		(23)
Note that it is not necessary to expand the series to differentiate; all you need to do is apply the power rule for differentiation to the general term. However, you may wish to verify term-by-term differentiation the first few times until you develop trust in this method.
Inserting the above two equations and equation (16) into equation (17) (which is not in standard form, but using it helps us avoid fractions), and explicitly replacing c with 0, yields

		(24)
We move the coefficients of the first two sums to the inside of each sum, and distribute the expression in front of the third sum to expand it into two new sums (one for each term in the coefficient):

		(25)
We use exponent properties to consolidate the powers of x:

		(26)

We factor out from each term to simplify the exponents:

		(27)
We perform a k-substitution in the last sum to make all the powers of x equal to n. Note that this changes the limits of summation:

		(28)

We explicitly write out the details of the term from each of the first three sums; this allows us to rewrite these sums with a starting index of , so that all four sums contain both the same powers of x and the same limits of summation:

		(29)
Some simplification yields

[bookmark: Eq_ODEExample1UnifiedSumForm]		(30)

At this point, all the powers of x that are 1 or greater (excluding the in front of the large braces) are inside summation symbols, and all the terms are explicitly listed in front.

Now we begin to match coefficients on the left and right sides of the equation. The constant terms (the ones that contain) at the beginning of the above equation must add to zero to match the corresponding coefficient of zero on the right side of the equation, leading to

		(31)

The coefficient , as in the case of the ordinary point, may be set arbitrarily; for simplicity, let’s pick . The equation becomes

[bookmark: Eq_ODEExampleIndicial]		(32)

This quadratic equation (if we solve it) will tell us what to use for r! Because the exponent r on the leading factor is called an index, this quadratic equation is called the indicial equation. It is a regular feature of Frobenius problems (which is a good thing; otherwise we couldn’t obtain a correct series).
Fortunately, there is a shortcut that allows us to obtain this equation in advance, as soon as we’ve identified the regular singular point. The indicial equation always has the form

		(33)

If the coefficients and look familiar, it’s because we’ve already seen them before, in equations (20) and (21). They were the values of the limits we used to test whether was a regular singular point! We found that and ; to illustrate the shortcut, we may insert these into the above formula, giving

		(34)
which simplifies to

		(35)

Multiplying both sides of this last equation by 2 gives the same indicial equation we obtained in equation (32), but with substantially less effort. Either of these equations is readily solved by factoring; the solutions are or are the solutions. Each solution for r will give rise to a different set of recurrence relations for the coefficients . To distinguish between the coefficients for the solution and the , we will name the coefficients for the as , and rename the coefficients for the solution as .

To obtain the and for , we must extract the appropriate terms from the summations in equation (30). We start with and ; these are the coefficients of the () terms in all the sums in equation (30), and are obtained from the terms in each sum. We find (for)

		(36)

and (for)

		(37)

Next up are and (the coefficients of the terms, obtained from the terms in each sum in equation (30)). For :

		(38)

The value of (for , again obtained from the terms in each sum) is

		(39)

For and , we extract the coefficients from all sums in equation (30); for ,

		(40)

and, for ,

		(41)
This process may be continued indefinitely to obtain as many coefficients as desired.

Keeping in mind that any series solution is necessarily approximate (the full solution would involve all the infinite number of terms in the series developed, whereas we can only write a finite number of these), we write the first few terms of each power series solution to demonstrate how the above coefficients are used. Plugging our results for , , , , , , , , and into equation (16) gives the approximate solutions and , where is used for , and is used for :

		(42)

		(43)

A simple way to write the fundamental solutions is to set and ; the fundamental set then becomes

[bookmark: _GoBack]		(44)
Page 6.3-10

image2.wmf
(

)

0

n

n

n

yaxc

¥

=

=-

å

oleObject54.bin

image40.wmf
(

)

(

)

(

)

(

)

(

)

2

22

0

2

32

333

23

222

limlim3limlim

693

3

xcxxx

x

xcQxx

xxxx

xx

b

®®®®

éù

-

éùéù

éù

=-×=-×===

êú

êúêú

ëû

-+

ëûëû

-

êú

ëû

oleObject55.bin

image41.wmf
0

a

oleObject56.bin

image42.wmf
3

x

=

oleObject57.bin

image43.wmf
3

x

=

oleObject58.bin

image44.wmf
0

b

oleObject2.bin

oleObject59.bin

image45.wmf
0

a

oleObject60.bin

image46.wmf
3

x

=

oleObject61.bin

image47.wmf
y

¢

oleObject62.bin

image48.wmf
y

¢¢

oleObject63.bin

image49.wmf
(

)

(

)

0

rn

n

n

yxcaxc

¥

=

=-×-

å

image3.wmf
{

}

n

a

oleObject64.bin

image50.wmf
(

)

0

nr

n

n

yaxc

¥

+

=

=-

å

oleObject65.bin

image51.wmf
{

}

n

a

oleObject66.bin

image52.wmf
xc

=

oleObject67.bin

oleObject68.bin

image53.wmf
constant

y

=

oleObject69.bin

oleObject3.bin

image54.wmf
undefined

y

=

oleObject70.bin

oleObject71.bin

oleObject72.bin

oleObject73.bin

image55.wmf
0

x

=

oleObject74.bin

image56.wmf
xh

c

=-

oleObject75.bin

image57.wmf
0

c

=

image4.wmf
(

)

Px

oleObject76.bin

image58.wmf
(

)

2

210

xyxyxy

¢¢¢

-++=

oleObject77.bin

image59.wmf
2

11

0

22

x

yyy

xx

+

¢¢¢

-+=

oleObject78.bin

image60.wmf
(

)

1

2

Px

x

=-

oleObject79.bin

image61.wmf
(

)

2

1

2

x

Qx

x

+

=

oleObject80.bin

image62.wmf
0

x

=

oleObject4.bin

oleObject81.bin

oleObject82.bin

image63.wmf
(

)

(

)

(

)

0

000

111

limlim0limlim

2222

xcxxx

x

xcPxx

xx

a

®®®®

--

éùéùéù

=-×=-×==-=-

éù

ëû

êúêúêú

ëûëûëû

oleObject83.bin

image64.wmf
(

)

(

)

(

)

(

)

2

22

0

22

000

1

111

limlim0limlim

2222

xcxxx

xx

xx

xcQxx

xx

b

®®®®

éù

+

++

éùéù

éù

=-×=-×===

êú

êúêú

ëû

ëûëû

ëû

oleObject84.bin

image65.wmf
0

a

oleObject85.bin

image66.wmf
0

b

oleObject86.bin

image5.wmf
(

)

Qx

oleObject87.bin

image67.wmf
(

)

(

)

1

0

nr

n

n

ynraxc

¥

+-

=

¢

=+-

å

oleObject88.bin

image68.wmf
(

)

(

)

(

)

2

0

1

nr

n

n

ynrnraxc

¥

+-

=

¢¢

=++--

å

oleObject89.bin

image69.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

21

2

000

2100100

nrnrnr

nnn

nnn

xnrnraxxnraxxax

¥¥¥

+-+-+

===

++---+-++-=

ååå

oleObject90.bin

image70.wmf
(

)

(

)

(

)

22111

0000

2110

nrnrnrnr

nnnn

nnnn

xnrnraxxnraxaxxax

¥¥¥¥

+-+-++

====

++--+++=

åååå

oleObject91.bin

image71.wmf
(

)

(

)

(

)

1

0000

210

nrnrnrnr

nnnn

nnnn

nrnraxnraxaxax

¥¥¥¥

+++++

====

++--+++=

åååå

oleObject5.bin

oleObject92.bin

image72.wmf
r

x

oleObject93.bin

image73.wmf
(

)

(

)

(

)

1

0000

210

rnnnn

nnnn

nnnn

xnrnraxnraxaxax

¥¥¥¥

+

====

éù

×++--+++=

êú

ëû

åååå

oleObject94.bin

image74.wmf
(

)

(

)

(

)

1

0001

210

rnnnn

nnnn

nnnn

xnrnraxnraxaxax

¥¥¥¥

-

====

éù

×++--+++=

êú

ëû

åååå

oleObject95.bin

image75.wmf
0

n

=

oleObject96.bin

image76.wmf
1

n

=

image6.wmf
xc

=

oleObject97.bin

image77.wmf
(

)

(

)

(

)

(

)

(

)

000

000

111

1

1

2121

0

nnn

nnn

nnn

r

n

n

n

rraxraxaxnrnraxnraxax

x

ax

¥¥¥

===

¥

-

=

éù

--++++--+++

êú

êú

×=

êú

êú

ëû

ååå

å

oleObject98.bin

image78.wmf
(

)

(

)

(

)

(

)

0

01

1111

211210

rnnnn

nnnn

nnnn

xrrraxnrnraxnraxaxax

¥¥¥¥

-

====

ìü

×--++++--+++=

éù

íý

ëû

îþ

åååå

oleObject99.bin

image79.wmf
r

x

oleObject100.bin

image80.wmf
0

x

oleObject101.bin

image81.wmf
0

x

oleObject6.bin

oleObject102.bin

image82.wmf
(

)

0

2110

rrra

--+=

éù

ëû

oleObject103.bin

image83.wmf
0

a

oleObject104.bin

image84.wmf
0

1

a

=

oleObject105.bin

image85.wmf
22

22102310

rrrrr

--+=Þ-+=

oleObject106.bin

image86.wmf
r

x

oleObject7.bin

oleObject107.bin

image87.wmf
(

)

00

10

rrr

ab

-++=

oleObject108.bin

image88.wmf
0

a

oleObject109.bin

image89.wmf
0

b

oleObject110.bin

image90.wmf
0

x

=

oleObject111.bin

image91.wmf
0

1

2

a

=-

oleObject8.bin

oleObject112.bin

image92.wmf
0

1

2

b

=

oleObject113.bin

image93.wmf
(

)

11

10

22

rrr

--+=

oleObject114.bin

image94.wmf
22

1131

00

2222

rrrrr

--+=Þ-+=

oleObject115.bin

image95.wmf
1

r

=

oleObject116.bin

image96.wmf
1

2

r

=

oleObject9.bin

oleObject117.bin

image97.wmf
{

}

n

a

oleObject118.bin

oleObject119.bin

oleObject120.bin

oleObject121.bin

oleObject122.bin

oleObject123.bin

image98.wmf
{

}

n

b

oleObject124.bin

oleObject10.bin

oleObject125.bin

oleObject126.bin

image99.wmf
1

n

³

oleObject127.bin

image100.wmf
1

a

oleObject128.bin

image101.wmf
1

b

oleObject129.bin

image102.wmf
x

oleObject130.bin

oleObject11.bin

image103.wmf
1

x

oleObject131.bin

image104.wmf
1

n

=

oleObject132.bin

image105.wmf
1

r

=

oleObject133.bin

image106.wmf
(

)

(

)

(

)

1110

111010

10

211111110

423

1

3

aaaa

aaaaaa

aa

++--+++=

-+=-Þ=-

=-

oleObject134.bin

image107.wmf
1

2

r

=

oleObject135.bin

oleObject12.bin

image108.wmf
1110

1110

10

111

211110

222

33

22

bbbb

bbbb

bb

æöæöæö

++--+++=

ç÷ç÷ç÷

èøèøèø

-+=-

=-

oleObject136.bin

image109.wmf
2

a

oleObject137.bin

image110.wmf
2

b

oleObject138.bin

image111.wmf
2

x

oleObject139.bin

image112.wmf
2

n

=

oleObject140.bin

image7.wmf
(

)

(

)

(

)

xxcPx

=-×

p

image113.wmf
0

r

=

oleObject141.bin

image114.wmf
(

)

(

)

(

)

2221

222121

2100

221211210

12310

1111

1010330

aaaa

aaaaaa

aaaa

++--+++=

-+=-Þ=-

æö

=-=--=

ç÷

èø

oleObject142.bin

image115.wmf
2

b

oleObject143.bin

image116.wmf
1

2

r

=

oleObject144.bin

oleObject145.bin

image117.wmf
(

)

2221

222121

2100

111

222120

222

155

6

22

111

666

bbbb

bbbbbb

bbbb

æöæöæö

++--+++=

ç÷ç÷ç÷

èøèøèø

-+=-Þ=-

=-=--=

oleObject13.bin

oleObject146.bin

image118.wmf
3

a

oleObject147.bin

image119.wmf
3

b

oleObject148.bin

image120.wmf
3

n

=

oleObject149.bin

image121.wmf
1

r

=

oleObject150.bin

image122.wmf
(

)

(

)

(

)

3332

333232

3100

231311310

24421

1111

212130630

aaaa

aaaaaa

aaaa

++--+++=

-+=-Þ=-

æö

=-=-=-

ç÷

èø

image8.wmf
(

)

(

)

(

)

2

xxcQx

=-×

q

oleObject151.bin

image123.wmf
1

2

r

=

oleObject152.bin

image124.wmf
3332

333232

3200

111

233130

222

357

15

22

1111

1515690

bbbb

bbbbbb

bbbb

æöæöæö

++--+++=

ç÷ç÷ç÷

èøèøèø

-+=-Þ=-

æö

=-=-=-

ç÷

èø

oleObject153.bin

image125.wmf
r

oleObject154.bin

image126.wmf
0

a

oleObject155.bin

image127.wmf
1

a

oleObject14.bin

oleObject156.bin

image128.wmf
2

a

oleObject157.bin

image129.wmf
3

a

oleObject158.bin

image130.wmf
0

b

oleObject159.bin

image131.wmf
1

b

oleObject160.bin

image132.wmf
2

b

oleObject15.bin

oleObject161.bin

image133.wmf
3

b

oleObject162.bin

image134.wmf
1

y

oleObject163.bin

image135.wmf
2

y

oleObject164.bin

image136.wmf
1

r

=

oleObject165.bin

oleObject166.bin

image9.wmf
(

)

Px

image137.wmf
1

2

r

=

oleObject167.bin

image138.wmf
2

y

oleObject168.bin

image139.wmf
(

)

(

)

1

123423

101230123

0

2323

100000

111111

1

330630330630

n

n

n

yaxcaxaxaxaxxaaxaxax

yxaaxaxaxaxxxx

¥

+

=

=-=++++=++++

æöæö

=-+-+=-+-+

ç÷ç÷

èøèø

å

KK

KK

oleObject169.bin

image140.wmf
(

)

(

)

12

123252721223

201230123

0

2323

200000

1111

1

690690

n

n

n

ybxcbxbxbxbxxbbxbxbx

yxbbxbxbxbxxxx

¥

+

=

=-=++++=++++

æöæö

=-+-+=-+-+

ç÷ç÷

èøèø

å

KK

KK

oleObject170.bin

image141.wmf
0

1

a

=

oleObject171.bin

oleObject16.bin

image142.wmf
0

1

b

=

oleObject172.bin

image143.wmf
{

}

2323

12

11111

,1,1

330630690

yyxxxxxxxx

ìü

æöæö

=-+-+-+-+

íý

ç÷ç÷

èøèø

îþ

KK

oleObject173.bin

image10.wmf
(

)

Qx

oleObject17.bin

oleObject18.bin

image11.wmf
(

)

(

)

0

lim

xc

xcPx

a

®

=-×

éù

ëû

oleObject19.bin

image12.wmf
(

)

(

)

2

0

lim

xc

xcQx

b

®

éù

=-×

ëû

oleObject20.bin

image13.wmf
±¥

oleObject21.bin

oleObject22.bin

oleObject23.bin

oleObject24.bin

image14.wmf
(

)

32

6920

xxxyyy

¢¢¢

-+++=

oleObject25.bin

image15.wmf
y

¢¢

oleObject26.bin

image16.wmf
3232

2

0

6969

yy

y

xxxxxx

¢

¢¢

++=

-+-+

oleObject27.bin

image17.wmf
(

)

32

1

69

Px

xxx

=

-+

oleObject28.bin

image18.wmf
(

)

32

2

69

Qx

xxx

=

-+

oleObject29.bin

image19.wmf
(

)

2

3

xx

-

oleObject30.bin

image20.wmf
(

)

Px

oleObject31.bin

image21.wmf
(

)

Qx

oleObject32.bin

image22.wmf
0

x

=

oleObject33.bin

image23.wmf
3

x

=

oleObject34.bin

image24.wmf
x

=±¥

oleObject35.bin

image25.wmf
0

x

=

oleObject36.bin

image26.wmf
(

)

(

)

(

)

(

)

(

)

(

)

22

32

11

0

69

33

x

xxcPxx

xxx

xxx

=-×=-×==

-+

--

p

oleObject37.bin

image27.wmf
(

)

(

)

(

)

(

)

(

)

(

)

2

22

22

32

222

0

69

33

xx

xxcQxx

xxx

xxx

=-×=-×==

-+

--

q

oleObject38.bin

image28.wmf
0

x

=

oleObject39.bin

image29.wmf
(

)

0

p

oleObject40.bin

image30.wmf
(

)

0

q

oleObject41.bin

oleObject42.bin

image1.wmf
(

)

(

)

0

yPxyQxy

¢¢¢

++=

image31.wmf
(

)

(

)

2

11

0

9

03

==

-

p

oleObject43.bin

image32.wmf
(

)

(

)

(

)

2

20

00

03

==

-

q

oleObject44.bin

oleObject45.bin

image33.wmf
(

)

0

q

oleObject46.bin

oleObject47.bin

image34.wmf
(

)

(

)

(

)

(

)

(

)

0

22

32

000

111

limlim0limlim

699

33

xcxxx

x

xcPxx

xxx

xxx

a

®®®®

éùéù

éù

=-×=-×===

éù

êúêú

ëû

êú

-+

ëû

--

êúêú

ëûëû

oleObject48.bin

oleObject1.bin

image35.wmf
(

)

(

)

(

)

(

)

(

)

2

22

0

22

32

000

222

limlim0limlim0

69

33

xcxxx

xx

xcQxx

xxx

xxx

b

®®®®

éùéù

éù

éù

=-×=-×===

êúêú

êú

ëû

-+

ëû

--

êúêú

ëûëû

oleObject49.bin

image36.wmf
0

a

oleObject50.bin

image37.wmf
0

b

oleObject51.bin

oleObject52.bin

image38.wmf
3

x

=

oleObject53.bin

image39.wmf
(

)

(

)

(

)

(

)

(

)

(

)

0

2

32

333

3

111

limlim3limlimundefined

6930

3

xcxxx

x

xcPxx

xxxxx

xx

a

®®®®

éù

éù

-

éù

=-×=-×====

éù

êú

êú

ëû

êú

-+-

ëû

-

êú

ëû

ëû

