MATH V23 LECTURE NOTES (Bowen)
Section 6.2
Series Solutions About Ordinary Points
The following discussion contains equation numbers. References to equation numbers point to the equation numbers within these notes, and do not correspond to the equation numbering in this section of the textbook, unless an explicit reference to the textbook appears along with the stated equation number.
Terms and concepts. Radicand, “root” of radical, integrand, summand, limits of summation, re-indexing by k-substitution, piecewise summation, analytic function, ordinary and singular points, coefficient matching, recurrence relation.

Introduction. We seek to solve second-order homogeneous ODEs by finding a power series (in general, a Taylor series) that represents the solution y. (Since the equation is homogeneous, we do not need to find a particular solution .) More specifically, we seek a solution of the form

[bookmark: Eq_GenericTaylorExpansion]		(1)
(where c is a constant value of x about which the Taylor series is expanded) to the equation

[bookmark: Eq_GenericSecondOrderHomogeneousEq]		(2)

Note that, in this context, and are functions, not merely constant coefficients, as they have been through chapter 4 of the textbook [Zill].

A complete characterization of the solution requires us to find expressions for each of the coefficients in the series of equation (1), and to identify two independent solutions (that is, a fundamental set). (Since there is an infinite number of coefficients, we will try to find a general expression for them.) In this section, we will further require that and be analytic at , which is to say that they are infinitely differentiable at , thus guaranteeing that each has a Taylor series around . If and are analytic at , we call an ordinary point. If either or is not analytic at , then we call a singular point. The method of solution is different for singular points; we will address this when we reach section 6.3 of the textbook.

Differentiation of power series. To begin solving equation (2), we insert the generic solution y from equation (1). To accomplish this, we must also find expressions for and . In your calculus course, you were likely shown that a convergent power series can be differentiated or integrated term-by-term. To see what we obtain for and , it is instructive to expand equation (1), obtain its first and second derivatives, and then look for a pattern that allows us to rewrite and in the more compact sigma (summation) notation. Equation (1) becomes

[bookmark: Eq_GenericTaylorExpansionSum]		(3)
and term-by-term differentiation yields

[bookmark: Eq_GenericTaylorExpansionFirstDerivSum]		(4)

[bookmark: Eq_GenericTaylorExpansionSecondDerivSum]		(5)

Each of the above series has a pattern relating the coefficients, the subscripts, and the powers of ; with a bit of thought, we may convert these to summation notation:

[bookmark: Eq_GenericTaylorExpansionFirstDeriv]		(6)

[bookmark: Eq_GenericTaylorExpansionSecondDeriv]		(7)

When we begin to solve our equation, we will find it more convenient to write these sums so that each has the same power of . We accomplish this via a “k-substitution,” which, like a u-substitution in integration, requires us to change both the variable and the limits (in this case, the limits of summation rather than the limits of integration). In equation (6), we let (so) to obtain the alternative form

[bookmark: Eq_GenericTaylorExpansionFirstDerivK]		(8)

and in equation (7) we let (so) to obtain

[bookmark: Eq_GenericTaylorExpansionSecondDerivK]		(9)

In general, whenever a k-substitution is needed to re-index a sum, the value selected for k should be the power to which is raised. If that power is already just n, then no k-substitution should be required.

Going back to calculus one more time, note that when we integrate, the independent variable is called a “dummy variable”, because it doesn’t really matter whether we integrate (for example) or ; we get the same answer regardless of whether the variable is x or t. Summations are analogous; it doesn’t matter whether the index is k or n. So, we may rewrite equations (8) and (9) as

[bookmark: Eq_GenericTaylorExpansionFirstDerivSubs]		(10)

[bookmark: Eq_GenericTaylorExpansionSecondDerivSubs]		(11)
You may wish to write equations (1), (10), and (11) on your cheat sheet for the next exam, rather than having to re-derive them for every problem (they will always be the same). You would do well to be skeptical about equations (10) and (11) until you become more familiar with k-substitutions; verify them by plugging in the first few values of n to ensure that you still obtain the corresponding expansions from equations (4) and (5), respectively.

After we plug the series for , , and into the differential equation, the next steps are to perform k-substitutions as needed so that each summation contains the same power of or , and then make additional adjustments so that all the series have the same limits. Next, we consolidate the sums into a single sum (to the extent that this is possible; there may be a small number of additional terms in front of the infinite sum). Finally, we set each of the coefficients in the sum on the left side of the equation equal to zero (since the right side of the equation is identically zero) to determine expressions for the . This completes the solution. What we usually find is that each of the has a value that depends on an arbitrary selection of values for ; and ; or , , and .
Example. Consider the equation

		(12)

and find a series solution expanded about (that is, a Maclaurin series for y). We note that and , so any value of c (including) is an ordinary point, as these functions are readily (and infinitely) differentiable. Plugging in equations (1) and (11), and setting , give

		(13)
Distributing the x in front of the second sum into the summand (the expression to the right of the sigma) gives

		(14)

where we have treated as and used exponent properties to consolidate the product . Performing a k-substitution on the second sum (with), and reverting the dummy variable back to n afterward, give

		(15)

which serves the purpose of achieving identical values of the exponent in both sums. It is only possible to make the limits of summation agree by separating out the term of the first sum:

		(16)
With matching limits and powers of x on the remaining sums, we may consolidate these:

		(17)
Because the zero on the right side of the equation may be thought of as

		(18)

we set each coefficient of on the left side of the equation equal to the corresponding coefficient of (zero!) on the right side of the equation to obtain the solution. For specific values of n starting with zero, we obtain

[bookmark: Eq_Example1RecurrenceFormulas]		(19)
Solving the first row in equation (19) gives

		(20)

From the remaining rows, we see that the value of depends on the value of , the value of depends on the value of , the value of depends on the value of (which we just found to be zero), and so on. This dependence of later coefficients (those with larger subscripts) on the values of earlier coefficients (those with smaller subscripts) is a general feature of the method of series solutions, and the general form (which is called a recurrence relation) is shown in the last row of equation (19). Note that there are no formulas for or ; these may be set arbitrarily, and their roles are equivalent to those of the constants of integration and from the complementary solution

		(21)
that we found in chapter 4 of the textbook. We now seek a pattern for the values of all the coefficients, which should enable us (if we find a pattern; in most problems there is no pattern!) to write a series for the solution y. Solving each row in equation (19) gives

		(22)
So, there is a pattern, but not a particularly nice one. (For more complicated results, it may only be possible to write the first few terms of the series expansion, rather than the general term. This can still lead to a good approximate solution, provided that the series converges quickly.)

Every third coefficient is zero, starting with , so , , , etc. If we assume that , we may write this as .

Starting with , every third coefficient depends on the arbitrary value we assign to . The general form for these coefficients (this time assuming that) is

		(23)

Finally, starting with , every third coefficient depends on the arbitrary value we assign to . The general form for these coefficients (with) is

		(24)

Plugging all these coefficient formulas into equation (3) (again, with) gives

		(25)
or, after eliminating the zero terms,

		(26)

We may break this solution into one summation for each element of the fundamental set by factoring out or from each term that contains these quantities:

		(27)
or (using summation notation for all terms to which it can be applied)

		(28)

where each quantity in brackets is an element of the fundamental set, and and are arbitrary constants. (In an IVP, it would, in principle, be possible to obtain specific values for and ; in practice, this may be impossible unless the infinite series can be evaluated or closely approximated for the given values of and .)

It should be noted that if the problem were modified to request an expansion around a non-zero value (for example,), none of the above work could be re-used. It would be necessary to start the entire problem from scratch, and a completely different series would be obtained.

[bookmark: _GoBack]If an obvious pattern for the cannot be obtained from the recurrence relation (making it impossible to write the series using summation notation), it is generally considered acceptable to write the first few terms of the series for y without including the general term (the one with k or n in it). In such cases, at least four nonzero terms should be provided. Also, the value of c should be chosen at or near the value of x for which a solution is desired, so that the series obtained for y converges rapidly. This allows a good approximation to be found even though only a small number of terms may be used. If is large, there is also a risk that the series for y will not converge, rendering one or both of them useless as a solution.
Page 6.2-7

image2.wmf
(

)

0

n

n

n

yaxc

¥

=

=-

å

image37.wmf
0

yxy

¢¢

-=

oleObject57.bin

image38.wmf
0

c

=

oleObject58.bin

image39.wmf
(

)

0

Px

=

oleObject59.bin

image40.wmf
(

)

Qxx

=

oleObject60.bin

oleObject61.bin

oleObject62.bin

oleObject2.bin

image41.wmf
(

)

(

)

2

00

210

nn

nn

nn

nnaxxax

¥¥

+

==

++-=

åå

oleObject63.bin

image42.wmf
(

)

(

)

1

2

00

210

nn

nn

nn

nnaxax

¥¥

+

+

==

++-=

åå

oleObject64.bin

image43.wmf
x

oleObject65.bin

image44.wmf
1

x

oleObject66.bin

image45.wmf
1

n

xx

×

oleObject67.bin

image3.wmf
(

)

(

)

0

yPxyQxy

¢¢¢

++=

image46.wmf
1

kn

=+

oleObject68.bin

image47.wmf
(

)

(

)

21

01

210

nn

nn

nn

nnaxax

¥¥

+-

==

++-=

åå

oleObject69.bin

image48.wmf
0

n

=

oleObject70.bin

image49.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

0

221

011

0

221

11

221

11

21210

21210

2210

nnn

nnn

nnn

nn

nn

nn

nn

nn

nn

nnaxnnaxax

axnnaxax

annaxax

¥¥

++-

===

¥¥

+-

==

¥¥

+-

==

éù

+++++-=

êú

ëû

+++-=

+++-=

ååå

åå

åå

oleObject71.bin

image50.wmf
(

)

(

)

(

)

(

)

221

1

221

1

2210

2210

nn

nn

n

n

nn

n

annaxax

annaax

¥

+-

=

¥

+-

=

éù

+++-=

ëû

+++-=

éù

ëû

å

å

oleObject72.bin

oleObject3.bin

image51.wmf
23

0

000000

n

n

xxxx

¥

=

=++++=

å

K

oleObject73.bin

image52.wmf
n

x

oleObject74.bin

oleObject75.bin

image53.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

2

30

41

52

21

0:

20

1:320

2:430

3:540

:210

kk

n

a

naa

naa

naa

nkkkaa

+-

=

=

=-=

=-=

=-=

=++-=

MM

oleObject76.bin

image54.wmf
2

0

a

=

oleObject77.bin

image55.wmf
3

a

image4.wmf
(

)

Px

oleObject78.bin

image56.wmf
0

a

oleObject79.bin

image57.wmf
4

a

oleObject80.bin

image58.wmf
1

a

oleObject81.bin

image59.wmf
5

a

oleObject82.bin

image60.wmf
2

a

oleObject4.bin

oleObject83.bin

image61.wmf
0

a

oleObject84.bin

image62.wmf
1

a

oleObject85.bin

image63.wmf
1

c

oleObject86.bin

image64.wmf
2

c

oleObject87.bin

image65.wmf
1122

c

ycycy

=+

image5.wmf
(

)

Qx

oleObject88.bin

image66.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

0

3

1

2

30

41

52

30

63

41

74

85

60

96

7

1

4

5

107

1

6

7

8

9

10

11

18

0

32

43

540

65

562356

76

6734

23

67

870

98

89235689

109

9103467910

11100

3

.

4

a

aa

aa

aa

aa

aa

aa

aa

aa

aa

aa

a

a

aa

a

a

a

a

a

a

a

a

a

a

a

a

etc

a

®=

®=

®

®

®

®

=

=

=

==

===

===

==

===

®

®

=

==

®

==

oleObject89.bin

image67.wmf
2

0

a

=

oleObject90.bin

image68.wmf
5

0

a

=

oleObject91.bin

image69.wmf
8

0

a

=

oleObject92.bin

image70.wmf
11

0

a

=

oleObject5.bin

oleObject93.bin

image71.wmf
0,1,2,3,

k

=

K

oleObject94.bin

image72.wmf
32

0

k

a

+

=

oleObject95.bin

image73.wmf
3

a

oleObject96.bin

image74.wmf
0

a

oleObject97.bin

image75.wmf
1,2,3,4,

k

=

K

image6.wmf
n

a

oleObject98.bin

image76.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

0

3

235689313

k

a

a

kk

=

-

K

oleObject99.bin

image77.wmf
4

a

oleObject100.bin

image78.wmf
1

a

oleObject101.bin

oleObject102.bin

image79.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

31

3467910331

k

a

a

kk

+

=

+

K

oleObject103.bin

oleObject6.bin

image80.wmf
0

c

=

oleObject104.bin

image81.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

2345

0

1

01

331

0

1

00

612

2356893133467910331

kk

a

a

yaaxxxxx

a

a

xx

kkkk

+

=++++++

+++

-+

K

K

KK

oleObject105.bin

image82.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

34

0

1

01

331

0

1

612

2356893133467910331

kk

a

a

yaaxxx

a

a

xx

kkkk

+

=++++

+++

-+

K

K

KK

oleObject106.bin

image83.wmf
0

a

oleObject107.bin

image84.wmf
1

a

oleObject108.bin

oleObject7.bin

image85.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

33

0

431

1

11

1

6235689313

11

123467910331

k

k

yaxx

kk

axxx

kk

+

éù

=++++

êú

-

ëû

éù

+++++

êú

+

ëû

KK

K

KK

K

oleObject109.bin

image86.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

3

0

1

31

1

1

1

1

235689313

1

3467910331

k

k

k

k

yax

kk

axx

kk

¥

=

¥

+

=

éù

=+

êú

-

ëû

éù

++

êú

+

ëû

å

å

K

K

oleObject110.bin

oleObject111.bin

oleObject112.bin

oleObject113.bin

oleObject114.bin

image87.wmf
(

)

0

yx

oleObject115.bin

oleObject8.bin

image88.wmf
(

)

0

yx

¢

oleObject116.bin

image89.wmf
2

c

=

oleObject117.bin

image90.wmf
{

}

n

a

oleObject118.bin

image91.wmf
xc

-

oleObject119.bin

image7.wmf
xc

=

oleObject9.bin

oleObject10.bin

oleObject11.bin

oleObject12.bin

oleObject13.bin

oleObject14.bin

oleObject15.bin

oleObject16.bin

oleObject17.bin

oleObject18.bin

oleObject19.bin

image8.wmf
y

¢

oleObject20.bin

image9.wmf
y

¢¢

oleObject21.bin

oleObject22.bin

oleObject23.bin

oleObject24.bin

oleObject25.bin

image10.wmf
(

)

(

)

(

)

(

)

(

)

2345

012345

yaaxcaxcaxcaxcaxc

=+-+-+-+-+-+

K

oleObject26.bin

image11.wmf
(

)

(

)

(

)

(

)

234

12345

2345

yaaxcaxcaxcaxc

¢

=+-+-+-+-+

K

oleObject27.bin

image12.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

23

2345

21324354

yaaxcaxcaxc

¢¢

=×+×-+×-+×-+

K

oleObject28.bin

image13.wmf
(

)

xc

-

oleObject29.bin

image14.wmf
(

)

1

1

n

n

n

ynaxc

¥

-

=

¢

=-

å

oleObject30.bin

image15.wmf
(

)

(

)

2

2

1

n

n

n

ynnaxc

¥

-

=

¢¢

=--

å

oleObject31.bin

oleObject32.bin

image16.wmf
1

kn

=-

oleObject33.bin

image17.wmf
1

nk

=+

oleObject34.bin

image18.wmf
(

)

(

)

1

0

1

k

k

k

ykaxc

¥

+

=

¢

=+-

å

oleObject35.bin

image19.wmf
2

kn

=-

oleObject36.bin

image20.wmf
2

nk

=+

oleObject37.bin

image21.wmf
(

)

(

)

(

)

2

0

21

k

k

k

ykkaxc

¥

+

=

¢¢

=++-

å

oleObject38.bin

image22.wmf
(

)

xc

-

oleObject39.bin

image23.wmf
2

2

1

xdx

ò

oleObject40.bin

image24.wmf
2

2

1

tdt

ò

oleObject41.bin

image25.wmf
(

)

(

)

1

0

1

n

n

n

ynaxc

¥

+

=

¢

=+-

å

oleObject42.bin

image26.wmf
(

)

(

)

(

)

2

0

21

n

n

n

ynnaxc

¥

+

=

¢¢

=++-

å

oleObject43.bin

image27.wmf
y

oleObject44.bin

image28.wmf
y

¢

image1.wmf
p

y

oleObject45.bin

image29.wmf
y

¢¢

oleObject46.bin

image30.wmf
x

oleObject47.bin

image31.wmf
(

)

xc

-

oleObject48.bin

image32.wmf
{

}

n

a

oleObject49.bin

oleObject50.bin

oleObject1.bin

image33.wmf
0

a

oleObject51.bin

image34.wmf
0

a

oleObject52.bin

image35.wmf
1

a

oleObject53.bin

oleObject54.bin

oleObject55.bin

image36.wmf
2

a

oleObject56.bin

