MATH V23 LECTURE NOTES (Bowen)
Section 4.3
Homogeneous Linear Equations with Constant Coefficients
The following discussion contains equation numbers. References to equation numbers point to the equation numbers within these notes, and do not correspond to the equation numbering in this section of the textbook, unless an explicit reference to the textbook appears along with the stated equation number.







For the purposes of this section, a complex number is a number having the form , where a (the real part of z) and b (the imaginary part of z) are real constants, and  (or ). A pure imaginary number (or just imaginary number) is a complex number whose real part is equal to zero. A real number may be thought of as a complex number  whose imaginary part is equal to zero. Note that the imaginary part of a complex number is defined as just the coefficient b, not the entire imaginary term bi. The complex conjugate (or just conjugate) of a complex number is the complex number obtained by reversing the sign of the imaginary part; that is, the conjugate of  is , and vice-versa. Every real number is equal to its own complex conjugate.
Introduction. Homogeneous linear equations with constant coefficients are a special yet common instance of ODEs in which the coefficient functions multiplying the derivatives on the left side of the equation are all constants. Second-order equations of this type model common physical systems such as undriven simple harmonic oscillators (with and without friction) and undriven LC and LRC circuits (that is, circuits in which the capacitor is initially charged, then allowed to discharge naturally through the circuit, without an external power supply being present). The corresponding nonhomogeneous equations, to be discussed later, model driven systems (e.g., “pumped” oscillators, or LRC circuits driven by an external power supply). In most cases, two independent solutions are readily obtained. However, in some special cases, only a single solution is initially obtained. In these cases, the technique of Reduction of Order, which we covered in section 4.2 of the textbook [Zill], may be applied to recover a second independent solution from the one first found.

In accordance with the theory of linear homogeneous equations developed in textbook section 4.1, the general solution to the second-order equation consists of all linear combinations of the two independent solutions obtained. At its simplest, the second-order constant-coefficient technique is often little more difficult than solving a quadratic equation. Higher orders require solving polynomial equations whose degree (and number of independent solutions) is the same as the order of the ODE, so you may wish to review synthetic division and the rational root theorem from your precalculus course (see Example 5 on page 139 of the textbook if you do not have access to your precalculus textbook) before tackling these. The solutions are typically a linear combination of either exponential, sine, or cosine functions (or products thereof, such as ), depending on the numerical values of the coefficients. This is because the exponential, sine, and cosine functions are the only elementary functions whose first, second, or higher-order derivatives can be constant multiples of the original function.
The auxiliary equation. The most general linear homogeneous ODE of order 2 is

		(1)



but for the purposes of this section, all the coefficient functions , , and  will be assumed constant. Changing to prime notation, and dropping the redundant functional dependence on x, allows us to rewrite this as

[bookmark: Eq_HomogeneousWithConstantCoefficients]		(2)








where a, b, and c are all constants. Because exponential functions of the form , where m is a constant, have the special property that first and higher derivatives are constant multiples of the original function, we make an educated guess that the independent solutions might be of the form  and , and seek specific values of  and  that make the equation true (that is, they yield an identity when we substitute them and simplify). The general solution is constructed as the linear combination . For an IVP and certain BVPs, it is possible to determine specific values of the coefficients (parameters)  and  by fitting the general solution to the initial-value or boundary-value data after the general solution is found.

Let’s write either of the independent solutions as simply ; using the chain rule gives


	 and 	(3)
and we may substitute these directly into equation (2) as our first step toward the solution:

[bookmark: _Ref505593276][bookmark: _Ref505593298][bookmark: _Ref506921213]		(4)


Each term contains a factor , which is safe to factor out and then divide through on both sides of the equation, as the result of evaluating an exponential function is strictly nonzero. (We must always be careful not to inadvertently divide an equation by zero whenever the divisor contains a variable; otherwise we can “prove” almost anything, such as .) This leads to

		(5)




The equation on the right above, which is quadratic in m, is called the auxiliary equation. Solving it, by factoring, completing the square, or (when necessary) using the quadratic formula, allows us to determine the values of  and  to use in stating the two independent solutions of the second-order equation. However, if a repeated solution is found to the auxiliary equation (when the discriminant , leading to ), then this quadratic-based method only provides one independent solution. Fortunately, we may resort to the Reduction of Order technique from section 4.2 to find a second independent solution (more on this below). Therefore, even when the auxiliary equation has a repeated root, it is always possible to find exactly two independent solutions of the second-order ODE.







For higher orders of ODEs, it is easy to construct the auxiliary equation directly from the original ODE. Simply replace  with 1,  with ,  with ,  with , and so on.

Characterizing the solutions. Just as the solutions to a quadratic equation may be classified according to the value of the discriminant , the solutions to a second-order homogenous linear ODE with constant coefficients depend very much on the value of this quantity, giving rise to several different types of behavior if the ODE models a physical system.



Case 1:  (auxiliary equation has two distinct real roots). Consider the example . The auxiliary equation is , and we may verify

		(6)









The auxiliary equation is factorable (use factoring when possible; it’s usually faster than the quadratic formula), giving , with solutions  and . The corresponding independent solutions to the ODE are  and , valid on . The general solution is the set of all linear combinations of these, or . In general, if the discriminant is positive, then the general solution will be the sum of two exponential functions. An exception would be the situation when  in equation (2), for which the general solution would be  (you should verify this as an exercise so you may see for yourself why the second term does not contain an exponential function).





An interesting result occurs when  and  in equation (2). The discriminant is still positive, and the independent solutions are  and , where both values of m are the same except for the sign (verify this using the equation  as an example). Consider the hyperbolic sine (sinh) and hyperbolic cosine (cosh) functions, whose definitions are


	 and 	(7)
(See section 3.11 of the calculus textbook [Stewart] for a more thorough discussion of these functions, their properties, and their derivatives.) By adding and subtracting these definitions to/from each other, and replacing each instance of x with mx, we find that


	 and 	(8)
so, the general solution may be written

		(9)
where A and B are constants (in an IVP, these would be uniquely determined by the initial conditions). That is, for this special case, the general solution may be written as either a sum of exponential functions, or as the sum of sinh and cosh functions (see the discussion leading up to textbook equation (11)).

Case 2:  (auxiliary equation has two repeated real roots). Consider the example

[bookmark: Eq_ExampleOfZeroDiscriminant]		(10)

The auxiliary equation is , and we may verify

		(11)






The left side of the auxiliary equation is therefore a perfect square, giving , with solution . The corresponding solution to the ODE is . Because this method does not provide a second distinct solution, we apply the method of Reduction of Order by defining , or, omitting the explicit functional dependence, . The first and second derivatives of  are (from the product and chain rules)


	   and   	(12)
so, we plug these into equation (10) to begin our search for the second solution:

		(13)

Here, we divided both sides by the nonzero quantity , and combined like terms inside the parentheses, to obtain the surprisingly simple last line. Integrating twice successively to obtain an expression for u, and restoring the explicit functional dependence on x, we find that

		(14)
from which it immediately follows that

		(15)






In this last expression, we see that the term  is a constant multiple of the previously known independent solution , so we ignore this term (and the constant ) as we construct the second independent solution. After these adjustments, the second independent solution becomes . In general, for a second-order equation, if the discriminant is zero and the first independent solution is , then the second independent solution will be , The general solution for this example becomes

		(16)


where specific values for the constants  and  could be found if initial conditions were also provided.


Case 3:  and  (auxiliary equation has two conjugate pure imaginary roots). If we return to the “interesting result” in Case 1 and tweak the example slightly so the equation reads

		(17)





then the auxiliary equation becomes  or . Taking the square root of both sides yields , suggesting the independent solutions  and . What do we do with the complex exponents? Does it mean there is no solution in this case? Not at all! A clever Swiss mathematician, Leonhard Euler (1707–1783), proved the simple formula

		(18)
(see the Appendix at the end of this document for a proof). With the above results, the general solution becomes

		(19)


Because of the even/odd properties of the trigonometric functions,  and , so the above may be simplified as

		(20)





which is a linear combination of sine and cosine functions. (Compare with Case 1, in which the “interesting result” was a solution consisting of a linear combination of sinh and cosh functions.) If a real (rather than complex) result is required, as is generally the case in physics and engineering problems, we set  and  to be the complex conjugates of each other (that is,  and , with  real). With this restriction, the most general real result becomes

		(21)

		(22)


Setting  and , the most general real result becomes

		(23)
In the applications, it will be seen that this type of solution predicts the sinusoidal motion of an undamped harmonic oscillator, and the naturally sinusoidal current in an undriven LC circuit.


Case 4:  and  (auxiliary equation has two conjugate complex roots). This is the most complicated (and most interesting) case, so we’ve saved it for last. Consider the example

		(24)

The auxiliary equation is , and we may verify

		(25)
The left side of the auxiliary equation is prime (not factorable), obliging us to use the quadratic formula to obtain its solutions. We find

		(26)
which is fortunately not as bad as we might have feared, given the large coefficients in the original problem (perhaps you can tell that I “cooked” the numbers for this example).
The corresponding independent solutions to the ODE are


	  and  .	(27)




From our analysis of Case 3, we know that , and that, if we wish to restrict ourselves to general solutions that are real, we should select parameter values that are complex conjugates of each other. (Note that the factors of  are already real.) So we select  and , and write the general real solution as

		(28)

		(29)

		(30)

		(31)

		(32)


Setting  and  allows the general form of real solutions to be written as

		(33)


The graph of one member of this family of solutions (with  and ) is shown below.
[image: C:\Users\Michael\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Graph of decaying cosine wave.png]
As you can see, these solutions may model the decay of an undriven harmonic oscillator with damping, or of a discharging LRC circuit. In either case, the solutions asymptotically approach zero at either the left or right end of the x-axis.
Higher-order equations. For equations of order 3 or higher, the auxiliary equation will have the same degree as the order of the corresponding homogeneous linear ODE, and so must be solved by factoring or by approximation methods. (Most graphing calculators will provide approximate real decimal roots of polynomial equations; a few will also provide complex roots.) The rules for determining independent solutions are like those found Cases 1 through 4 derived above. In summary, if we seek only real solutions, then:
· 
For every real root m of the auxiliary equation having multiplicity 1, there will be an independent exponential solution to the homogeneous linear ODE of the form .
· 





For every real root m of the auxiliary equation having multiplicity , there will be k independent solutions to the homogeneous linear ODE of the form , , , , …, and .
· 













If the coefficients of the homogeneous linear ODE are real, every pure imaginary root  will be accompanied by a conjugate root . If these roots each have multiplicity 1, there will be two independent real solutions to the homogeneous linear ODE of the form  and . If these roots each have multiplicity , there will be  independent real solutions of the form , , , …, , , , , …, and .
· 













If the coefficients of the homogeneous linear ODE are real, every complex root  will be accompanied by a conjugate root . If these roots each have multiplicity 1, there will be two independent real solutions to the homogeneous linear ODE of the form  and . If these roots each have multiplicity , there will be  independent real solutions of the form , , , …, , , , , …, and .
[bookmark: _GoBack]See examples 3 and 4 on page 138 of the textbook.
Appendix: Proof of Euler’s Formula




Because the expression  contains the imaginary number i, assume that the result is a complex number  for which the values of  and  are as yet unknown; that is,

		(34)


However, because the values of  and  both depend on the value of x, we may rewrite this, showing the explicit functional dependence, as

[bookmark: Eq_EulerWithUndeterminedPolarCoords]		(35)
Taking the derivative with respect to x on both sides of equation (35) (being careful to employ the chain rule correctly as we would for implicit differentiation, and treating i as a constant) gives

		(36)


Segregating the terms containing  from the terms containing  and factoring these out gives

		(37)

Changing the negative sign in the second set of braces to  and factoring out one power of i from each term gives

		(38)
Comparing the braced expressions with equation (35) and substituting into the above equation gives

		(39)






from which it follows (by directly comparing the two sides of the equation in a manner like that used in the method of partial fractions) that  and  for all x. Integrating these results suggests that  and , where  and  are constants. Plugging these back into equation (35) gives

[bookmark: Eq_EulerWithConstants]		(40)




We may find numerical values for  and  by noting that if , then . Plugging this into the preceding equation gives

		(41)
Equating the real and imaginary parts of the last equation above gives the system

		(42)







We cannot solve the first equation in this system if ; therefore we assume , which makes it safe to divide the second equation on both sides by , giving  and therefore . Plugging this into the first equation of the system gives  and therefore . Finally, inserting these results into equation (40) gives

		(43)
which is the Euler formula. Q.E.D.[footnoteRef:1] [1:  Q.E.D. stands for “quod erat demonstrandum,” a Latin phrase meaning “that which was to be demonstrated.” In older mathematics texts, this abbreviation was frequently inserted f+ollowing each proof as an indication that the proof was complete at that point.] 







The result may also be proved by expanding the Taylor series for , , and  out to at least the 8th-power terms, then replacing x with ix in the expansion of , collecting real and imaginary terms, and comparing with the  and  expansions, respectively. However, that approach assumes a priori that Taylor series are still valid for complex arguments. (It turns out that they are, but the proof requires upper-division mathematics, and would have to be taken on faith for now, whereas the above proof only assumes that when an expression containing i is differentiated, we may treat i the same way we would treat any real constant.)
Page 4.3-10

image2.wmf
1

i

=-


image47.wmf
2

3

m

=


oleObject47.bin

image48.wmf
(

)

1

5

1

mx

x

yxee

-

==


oleObject48.bin

image49.wmf
(

)

2

3

2

mx

x

yxee

==


oleObject49.bin

image50.wmf
(

)

,

-¥¥


oleObject50.bin

image51.wmf
(

)

53

12

xx

yxcece

-

=+


oleObject51.bin

oleObject2.bin

image52.wmf
0

c

=


oleObject52.bin

image53.wmf
(

)

12

exp

b

yxcxc

a

æö

=-+

ç÷

èø


oleObject53.bin

image54.wmf
0

b

=


oleObject54.bin

image55.wmf
0

c

<


oleObject55.bin

image56.wmf
1

mx

ye

=


oleObject56.bin

image3.wmf
2

1

i

=-


image57.wmf
(

)

2

mx

yxe

-

=


oleObject57.bin

image58.wmf
40

yy

¢¢

-=


oleObject58.bin

image59.wmf
(

)

1

cosh

2

xx

xee

-

=+


oleObject59.bin

image60.wmf
(

)

1

sinh

2

xx

xee

-

=-


oleObject60.bin

image61.wmf
coshsinh

mx

emxmx

=+


oleObject61.bin

oleObject3.bin

image62.wmf
coshsinh

mx

emxmx

-

=-


oleObject62.bin

image63.wmf
(

)

(

)

(

)

(

)

(

)

12

12

1212

coshsinhcoshsinh

coshsinh

coshsinh

mxmx

yxcece

cmxmxcmxmx

ccmxccmx

AmxBmx

-

=+

=++-

=++-

=+


oleObject63.bin

image64.wmf
2

40

bac

-=


oleObject64.bin

image65.wmf
8160

yyy

¢¢¢

-+=


oleObject65.bin

image66.wmf
2

8160

mm

-+=


oleObject66.bin

image4.wmf
0

zbibi

=+=


image67.wmf
(

)

(

)

(

)

2

2

48411664640

bac

-=--=-=


oleObject67.bin

image68.wmf
(

)

(

)

440

mm

--=


oleObject68.bin

image69.wmf
1

4

m

=


oleObject69.bin

image70.wmf
(

)

1

4

1

mx

x

yxee

==


oleObject70.bin

image71.wmf
(

)

(

)

(

)

21

yxuxyx

=


oleObject71.bin

oleObject4.bin

image72.wmf
4

21

x

yuyue

==


oleObject72.bin

image73.wmf
2

y


oleObject73.bin

image74.wmf
(

)

444

2

4

xxx

yueueue

¢

¢

¢

==+


oleObject74.bin

image75.wmf
4444444

2

4416816

xxxxxxx

yueueueueueueue

¢¢

¢¢¢¢¢¢¢

=+++=++


oleObject75.bin

image76.wmf
(

)

(

)

(

)

(

)

444444

4

81684160

816832160

0

xxxxxx

x

ueueueueueue

euuuuuu

u

¢¢¢¢

++-++=

¢¢¢¢

++--+=

¢¢

=


oleObject76.bin

image5.wmf
0

zaia

=+=


image77.wmf
4

x

e


oleObject77.bin

image78.wmf
(

)

112

uCuuxCxC

®

¢

===+


oleObject78.bin

image79.wmf
(

)

(

)

(

)

(

)

444

211212

xxx

yxuxyxCxCeCxeCe

==+=+


oleObject79.bin

image80.wmf
4

2

x

Ce


oleObject80.bin

image81.wmf
(

)

4

1

x

yxe

=


oleObject81.bin

oleObject5.bin

image82.wmf
1

C


oleObject82.bin

image83.wmf
(

)

4

2

x

yxxe

=


oleObject83.bin

image84.wmf
(

)

1

mx

yxe

=


oleObject84.bin

image85.wmf
(

)

2

mx

yxxe

=


oleObject85.bin

image86.wmf
(

)

44

12

xx

yxcecxe

=+


oleObject86.bin

image6.wmf
abi

+


image87.wmf
1

c


oleObject87.bin

image88.wmf
2

c


oleObject88.bin

image89.wmf
2

40

bac

-<


oleObject89.bin

image90.wmf
0

b

=


oleObject90.bin

image91.wmf
40

yy

¢¢

+=


oleObject91.bin

oleObject6.bin

image92.wmf
2

40

m

+=


oleObject92.bin

image93.wmf
2

4

m

=-


oleObject93.bin

image94.wmf
2

mi

=±


oleObject94.bin

image95.wmf
(

)

2

1

ix

yxe

=


oleObject95.bin

image96.wmf
(

)

2

2

ix

yxe

-

=


oleObject96.bin

image7.wmf
abi

-


image97.wmf
(

)

ciscossin

ix

exxix

==+


oleObject97.bin

image98.wmf
(

)

(

)

(

)

(

)

(

)

22

1212

cos2sin2cos2sin2

ixix

yxcececxixcxix

-

=+=++-+-

éùéù

ëûëû


oleObject98.bin

image99.wmf
(

)

(

)

cos2cos2

xx

-=


oleObject99.bin

image100.wmf
(

)

(

)

sin2sin2

xx

-=-


oleObject100.bin

image101.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

121212

cos2sin2cos2sin2cos2sin2

yxcxixcxixccxiccx

=++-=++-

éùéù

ëûëû


oleObject101.bin

oleObject7.bin

image102.wmf
1

c


oleObject102.bin

image103.wmf
2

c


oleObject103.bin

image104.wmf
1

ci

ab

=+


oleObject104.bin

image105.wmf
2

ci

ab

=-


oleObject105.bin

image106.wmf
,

ab


oleObject106.bin

image8.wmf
sin

ax

ebx


image107.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

cos2sin2

yxiixiiix

abababab

=++-++--

éùéù

ëûëû


oleObject107.bin

image108.wmf
(

)

(

)

(

)

(

)

(

)

2

2cos22sin22cos22sin2

yxxixxx

abab

=+=-


oleObject108.bin

image109.wmf
2

A

a

=


oleObject109.bin

image110.wmf
2

B

b

=-


oleObject110.bin

image111.wmf
(

)

(

)

(

)

cos2sin2

yxAxBx

=+


oleObject111.bin

oleObject8.bin

oleObject112.bin

image112.wmf
0

b

¹


oleObject113.bin

image113.wmf
625200306410

yyy

¢¢¢

++=


oleObject114.bin

image114.wmf
2

625200306410

mm

++=


oleObject115.bin

image115.wmf
(

)

(

)

(

)

2

2

42004625306414000076602500765625000

bac

-=-=-=-<


oleObject116.bin

image116.wmf
(

)

(

)

2

20076562500

420076562500

226251250

200875020087504

7

12501250125025

bbaci

m

a

i

ii

-±-

-±--±

===

-±-

==±=-±


image9.wmf
(

)

(

)

(

)

2

210

2

0

dydy

axaxaxy

dxdx

×+×+×=


oleObject117.bin

image117.wmf
(

)

(

)

1

425

7

1

4

exp7

25

x

mx

ix

yxeixee

-

éù

æö

==-+=

ç÷

êú

èø

ëû


oleObject118.bin

image118.wmf
(

)

(

)

2

425

7

2

4

exp7

25

x

mx

ix

yxeixee

-

-

éù

æö

==--=

ç÷

êú

èø

ëû


oleObject119.bin

image119.wmf
(

)

(

)

7

cos7sin7

ix

exix

±

=±


oleObject120.bin

image120.wmf
(

)

425

x

e

-


oleObject121.bin

oleObject122.bin

oleObject9.bin

oleObject123.bin

image121.wmf
(

)

(

)

(

)

(

)

(

)

425425

77

xx

ixix

yxieeiee

abab

--

-

=++-


oleObject124.bin

image122.wmf
(

)

(

)

[

]

(

)

(

)

[

]

(

)

(

)

{

}

425

cos7sin7cos7sin7

x

yxeixixixix

abab

-

=×+++--+-

éùéù

ëûëû


oleObject125.bin

image123.wmf
(

)

(

)

[

]

(

)

(

)

[

]

(

)

(

)

{

}

425

cos7sin7cos7sin7

x

yxeixixixix

abab

-

=×+++--

éùéù

ëûëû


oleObject126.bin

image124.wmf
(

)

(

)

(

)

425

22

cos7sin7cos7sin7cos7sin7cos7sin7

x

yxe

xixixixxixixix

aabbaabb

-

=×

++++--+


oleObject127.bin

image125.wmf
(

)

(

)

(

)

425

2cos72sin7

x

yxexx

ab

-

=×-


image10.wmf
(

)

0

ax


oleObject128.bin

image126.wmf
2

A

a

=


oleObject129.bin

image127.wmf
2

B

b

=-


oleObject130.bin

image128.wmf
(

)

(

)

(

)

425

cos7sin7

x

yxeAxBx

-

=×+


oleObject131.bin

image129.wmf
1

A

=


oleObject132.bin

image130.wmf
0

B

=


oleObject10.bin

oleObject133.bin

image131.png
M s A

I




image132.wmf
1

mx

ce


oleObject134.bin

image133.wmf
1

k

>


oleObject135.bin

oleObject136.bin

image134.wmf
2

mx

cxe


oleObject137.bin

image135.wmf
2

3

mx

cxe


image11.wmf
(

)

1

ax


oleObject138.bin

image136.wmf
3

4

mx

cxe


oleObject139.bin

image137.wmf
1

kmx

k

cxe

-


oleObject140.bin

image138.wmf
bi


oleObject141.bin

image139.wmf
bi

-


oleObject142.bin

image140.wmf
cos

Abx


oleObject11.bin

oleObject143.bin

image141.wmf
sin

Bbx


oleObject144.bin

oleObject145.bin

image142.wmf
2

k


oleObject146.bin

image143.wmf
1

cos

Abx


oleObject147.bin

image144.wmf
2

cos

Axbx


oleObject148.bin

image12.wmf
(

)

2

ax


image145.wmf
2

3

cos

Axbx


oleObject149.bin

image146.wmf
1

cos

k

k

Axbx

-


oleObject150.bin

image147.wmf
1

sin

Bbx


oleObject151.bin

image148.wmf
2

sin

Bxbx


oleObject152.bin

image149.wmf
2

3

sin

Bxbx


oleObject153.bin

oleObject12.bin

image150.wmf
1

sin

k

k

Bxbx

-


oleObject154.bin

image151.wmf
abi

+


oleObject155.bin

image152.wmf
abi

-


oleObject156.bin

image153.wmf
cos

ax

Aebx


oleObject157.bin

image154.wmf
sin

ax

Bebx


oleObject158.bin

image13.wmf
0

aybycy

¢¢¢

++=


oleObject159.bin

oleObject160.bin

image155.wmf
1

cos

ax

Aebx


oleObject161.bin

image156.wmf
2

cos

ax

Axebx


oleObject162.bin

image157.wmf
2

3

cos

ax

Axebx


oleObject163.bin

image158.wmf
1

cos

kax

k

Axebx

-


oleObject164.bin

oleObject13.bin

image159.wmf
1

sin

ax

Bebx


oleObject165.bin

image160.wmf
2

sin

ax

Bxebx


oleObject166.bin

image161.wmf
2

3

sin

ax

Bxebx


oleObject167.bin

image162.wmf
1

sin

kax

k

Bxebx

-


oleObject168.bin

image163.wmf
ix

e


oleObject169.bin

image14.wmf
mx

ye

=


image164.wmf
(

)

cossin

zabiri

qq

=+=+


oleObject170.bin

image165.wmf
r


oleObject171.bin

image166.wmf
q


oleObject172.bin

image167.wmf
(

)

cossincossin

ix

eririr

qqqq

=+=+


oleObject173.bin

oleObject174.bin

oleObject175.bin

oleObject14.bin

image168.wmf
(

)

(

)

(

)

{

}

(

)

(

)

(

)

(

)

cossincossin

ix

erxxixrxxirxx

qqqq

=+=+

éùéùéùéù

ëûëûëûëû


oleObject176.bin

image169.wmf
(

)

(

)

(

)

(

)

(

)

(

)

cossinsincos

ix

drddrd

iexrxxixirxx

dxdxdxdx

qq

qqqq

=-++

éùéùéùéù

ëûëûëûëû


oleObject177.bin

image170.wmf
dr

dx


oleObject178.bin

image171.wmf
d

dx

q


oleObject179.bin

image172.wmf
(

)

(

)

{

}

(

)

(

)

(

)

(

)

{

}

cossinsincos

ix

drd

iexixrxxirxx

dxdx

q

qqqq

=×++×-+

éùéùéùéù

ëûëûëûëû


oleObject180.bin

image15.wmf
(

)

1

1

mx

yxe

=


image173.wmf
2

i


oleObject181.bin

image174.wmf
(

)

(

)

{

}

(

)

(

)

(

)

(

)

{

}

(

)

(

)

{

}

(

)

(

)

(

)

(

)

{

}

2

cossinsincos

cossincossin

ix

drd

iexixirxxirxx

dxdx

drd

xixirxxirxx

dxdx

q

qqqq

q

qqqq

=×++×+

éùéùéùéù

ëûëûëûëû

=×++×+

éùéùéùéù

ëûëûëûëû


oleObject182.bin

image175.wmf
1

ixixix

drd

ieeie

dxrdx

q

éùéù

=××+×

ëûëû


oleObject183.bin

image176.wmf
0

dr

dx

=


oleObject184.bin

image177.wmf
1

d

dx

q

=


oleObject185.bin

oleObject15.bin

image178.wmf
(

)

1

rxC

=


oleObject186.bin

image179.wmf
(

)

2

xxC

q

=+


oleObject187.bin

image180.wmf
1

C


oleObject188.bin

image181.wmf
2

C


oleObject189.bin

image182.wmf
(

)

(

)

1212

cossin

ix

eCxCiCxC

=+++


oleObject190.bin

image16.wmf
(

)

2

2

mx

yxe

=


oleObject191.bin

oleObject192.bin

image183.wmf
0

x

=


oleObject193.bin

image184.wmf
00

110

ixi

eeei

====+


oleObject194.bin

image185.wmf
(

)

(

)

(

)

(

)

0

12121212

cossin10cossin

eCCiCCiCCiCC

=++=+

®


oleObject195.bin

image186.wmf
(

)

(

)

1212

1cos     and     0sin

CCCC

==


oleObject196.bin

oleObject16.bin

image187.wmf
1

0

C

=


oleObject197.bin

image188.wmf
1

0

C

¹


oleObject198.bin

image189.wmf
1

C


oleObject199.bin

image190.wmf
(

)

2

0sin

C

=


oleObject200.bin

image191.wmf
2

0

C

=


oleObject201.bin

image17.wmf
1

m


image192.wmf
(

)

1

1cos0

C

=


oleObject202.bin

image193.wmf
1

1

C

=


oleObject203.bin

image194.wmf
(

)

(

)

cossin

ix

exix

=+


oleObject204.bin

image195.wmf
x

e


oleObject205.bin

image196.wmf
cos

x


oleObject206.bin

oleObject17.bin

image197.wmf
sin

x


oleObject207.bin

oleObject208.bin

oleObject209.bin

oleObject210.bin

image18.wmf
2

m


oleObject18.bin

image19.wmf
(

)

12

12

mxmx

yxcece

=+


oleObject19.bin

image20.wmf
1

c


oleObject20.bin

image21.wmf
2

c


oleObject21.bin

image22.wmf
mx

ye

=


oleObject22.bin

image23.wmf
mx

yme

¢

=


oleObject23.bin

image24.wmf
2

mx

yme

¢¢

=


oleObject24.bin

image25.wmf
2

0

mxmxmx

amebmece

++=


oleObject25.bin

image26.wmf
mx

e


oleObject26.bin

image27.wmf
01

=


oleObject27.bin

image28.wmf
(

)

2

2

0

0

mx

eambmc

ambmc

®+

=

+

+

=

+


oleObject28.bin

image29.wmf
1

m


oleObject29.bin

image30.wmf
2

m


oleObject30.bin

image31.wmf
2

40

bac

-=


oleObject31.bin

image32.wmf
12

mm

=


oleObject32.bin

image33.wmf
y


oleObject33.bin

image34.wmf
y

¢


oleObject34.bin

image35.wmf
m


oleObject35.bin

image36.wmf
y

¢¢


oleObject36.bin

image1.wmf
zabi

=+


image37.wmf
2

m


oleObject37.bin

image38.wmf
y

¢¢¢


oleObject38.bin

image39.wmf
3

m


oleObject39.bin

image40.wmf
2

4

bac

-


oleObject40.bin

image41.wmf
2

40

bac

->


oleObject41.bin

oleObject1.bin

image42.wmf
2150

yyy

¢¢¢

+-=


oleObject42.bin

image43.wmf
2

2150

mm

+-=


oleObject43.bin

image44.wmf
(

)

(

)

(

)

2

2

424115460640

bac

-=--=+=>


oleObject44.bin

image45.wmf
(

)

(

)

530

mm

+-=


oleObject45.bin

image46.wmf
1

5

m

=-


oleObject46.bin

