MATH V23 LECTURE NOTES (Bowen)
Section 2.2
Separable Equations
Unless otherwise stated, it will be assumed in this section that x is the independent variable, and y is the dependent variable, for each differential equation discussed.
At long last, we are about to learn (in the next several sections) how to find closed-form solutions to several classes of first-order ODEs. The first method, introduced in this section, relies on the basic integration techniques you learned in MATH V21B.
Solution by integration. You may recall from the last section that, for equations of the form

if the function f is a function of y only, the equation is called an autonomous equation. If, however, the expression on the right side of the equation is a function of x only (), the equation can be solved by multiplying both sides by dx, which converts the equation to differential form:

Provided that has an antiderivative, a family of closed-form solutions may be obtained by simply integrating both sides and appending “” to the specific antiderivative. We may extend this technique to a wider class of functions , however, by noting that integration may also be used if f can be rewritten as the product of a function of x only and a function of y only; that is, if

This type of equation is said to be separable, or to have separable variables. Sometimes it is not initially obvious that an equation is separable. For example, consider the ODE

in which it appears that the x and y variables are hopelessly entangled with each other. However, by consulting a table of trigonometric identities, we find (using one of the product-to-sum formulas) that the expression on the right side of the equals sign may be rewritten as

which is a separable equation, with and . To solve this new equation, we start by using algebra to isolate all factors containing y or dy on the left side, and all factors containing x or dx on the right side. Multiplying both sides by yields the differential forms

, or

Integrating (accomplished by slapping an integral symbol in front of both sides) gives

(If you forgot the antiderivatives of obscure trigonometric functions, check the brief table of integrals inside the front cover of the textbook [Zill].) In the above equation, we combined the constants of integration from both integrals into a single value of C (the parameter for the solution family) on the right side of the equation (you may place C on either side of the result). Note that we leave this result in implicit form (because we’d have significant difficulty trying to isolate y). Also note that this solution is not valid for , because neither nor are defined there. I will call these y values “forbidden zones.” However, the interval of validity for a given solution is , as can be seen from using wxMaxima’s “plotdf” function to visualize the family of solutions. (See the lecture notes from section 2.1 for more information on wxMaxima and “plotdf.”) Here is sample wxMaxima command syntax for the ODE in this example:
load("plotdf");
plotdf(2*cos(x)*cos(y),[xfun,"acos(-1)/2;-acos(-1)/2;3*acos(-1)/2;
-3*acos(-1)/2"]);

After loading “plotdf” in the first command above, I have appended an “xfun” statement (the square brackets, semicolons, and quotes are a required part of this statement) to wxMaxima’s “plotdf” command. (You should be able to copy-and-paste directly from the above code block directly into a blank wxMaxima window if you have difficulty typing the detailed syntax manually.) The “xfun” feature allows the user to overlay the graphs of one or more user-specified functions of x onto the direction-field plot generated by “plotdf.” In this case, I am using “xfun” to graph horizontal lines to mark the forbidden zones and on the direction-field plot. Unfortunately, the “xfun” statement sends the user function(s) to an interpreter called TCL, which does not understand the concept of . However, TCL is aware of trig functions and their inverses, so I am using (which in TCL syntax is written acos(-1)) as a poor man’s substitute for , then multiplying this expression by and to obtain the forbidden y values. This is what gave rise to the more complicated syntax seen above. (Remember to use SHIFT+ENTER, not just ENTER, to instruct wxMaxima to execute a command.)
With these additional graphs, we may see where the “forbidden zones” are located on the graph (dark horizontal lines), and investigate the behavior of members of the family of solutions near these zones (note how the red solution curves seem rather anxious to avoid the forbidden zones). The screen-grab below exhibits some solution curves I obtained using the above commands (when in wxMaxima, click directly on the plot to interactively create the red curves), as well as the graphs of some of the forbidden zones.
[image:]
Initial value problems. We may select one member of the family of solutions by specifying an initial value. Example: solve

,

Multiply both sides of the first equation above by to separate the variables:

Then distribute the right-hand side, and integrate (solving the first integral using the substitution):

Finally, substitute the initial value information into the general solution above to find the value of C and the corresponding specific solution:

Although we could, in principle, obtain a closed-form solution without undue difficulty by isolating y, the implicit formula obtained in the last step would likely be sufficient for most practical purposes.
Losing a solution. See example 3 in the textbook for a discussion of how singular solutions may be lost during the separation-of-variables process. Here is another example:

For practice, try to show, using separation of variables, that the general solution is

Because we divided both sides by , we lost the possible solution (because if we had assumed that , it would have meant that we were dividing both sides of the equation by zero). This additional solution (which we may verify by direct substitution) is not a member of the preceding family of solutions, so it is a singular solution. We must add this singular solution to our list before claiming that we have found a complete list of solutions to the ODE. In general, whenever you divide both sides of an ODE by a function of y which includes zero in its range, you should check for singular solutions of the form by substituting appropriate constants into the original ODE to see whether they are also solutions.
This peculiarity arises from the nature of algebra, and its effects are not limited just to the study of differential equations. For example, if you were to start solving the algebra equation

by dividing both sides of the equation by x, you would obtain

[bookmark: _GoBack]However, the original problem was a third-degree (cubic) equation, so the Fundamental Theorem of Algebra insists that we should have obtained three solutions, not just two. Sure enough, if we re-examine the original equation, it is easy to verify (by direct substitution) that is the “missing” third solution, but it was “lost” when we divided both sides of the equation by x. You must train yourself to be aware of, and search for, these additional “lost” solutions before claiming that you have found every solution of any equation (including a differential equation).
Page 2.1-4

oleObject2.bin

image47.wmf
0

x

=

oleObject46.bin

image3.wmf
(

)

dygxdx

=

oleObject3.bin

image4.wmf
(

)

gx

oleObject4.bin

image5.wmf
C

+

oleObject5.bin

image6.wmf
(

)

,

fxy

oleObject6.bin

image7.wmf
(

)

(

)

dy

gxhy

dx

=×

oleObject7.bin

image8.wmf
(

)

(

)

coscos

dy

xyxy

dx

=-++

oleObject8.bin

image9.wmf
2coscos

dy

xy

dx

=

oleObject9.bin

image10.wmf
(

)

2cos

gxx

=

oleObject10.bin

image11.wmf
(

)

cos

hyy

=

oleObject11.bin

image12.wmf
cos

dx

y

oleObject12.bin

image13.wmf
2cos

cos

dy

xdx

y

=

oleObject13.bin

image14.wmf
sec2cos

ydyxdx

=

oleObject14.bin

image15.wmf
ò

oleObject15.bin

image16.wmf
lnsectan2sin

yyxC

+=+

oleObject16.bin

image17.wmf
(

)

21

357

,,,,,

22222

k

y

p

pppp

+

=±±±±±

KK

oleObject17.bin

image18.wmf
sec

y

oleObject18.bin

image19.wmf
tan

y

oleObject19.bin

image20.wmf
(

)

,

x

Î-

¥¥

oleObject20.bin

image21.wmf
2

y

p

=±

image22.wmf
3

2

y

p

=±

oleObject21.bin

image23.wmf
p

oleObject22.bin

image24.wmf
(

)

1

cos1

-

-

oleObject23.bin

image25.wmf
p

oleObject24.bin

image26.wmf
1

2

±

oleObject25.bin

image27.wmf
3

2

±

oleObject26.bin

image28.png
@ Plotat

X¥eEdeaaH

image29.wmf
(

)

2

2

6

x

xe

dy

dxy

+

=

oleObject27.bin

image30.wmf
(

)

01

y

=

oleObject28.bin

image31.wmf
6

ydx

oleObject29.bin

image32.wmf
(

)

2

62

x

ydyxedx

=+

image1.wmf
(

)

,

dy

fxy

dx

=

oleObject30.bin

image33.wmf
2

1

;2;

2

uxduxdxduxdx

===

oleObject31.bin

image34.wmf
2

62

x

ydyxedxxdx

=+

òòò

oleObject32.bin

image35.wmf
22

1

3

2

u

yedux

=+

ò

oleObject33.bin

image36.wmf
2

22

1

3

2

x

yexC

=++

oleObject34.bin

oleObject35.bin

oleObject1.bin

image37.wmf
(

)

(

)

(

)

2

22

0

115

3103

222

eCCC

=++®=+®=

oleObject36.bin

image38.wmf
2

22

15

3

22

x

yex

=++

oleObject37.bin

image39.wmf
(

)

223

1

dy

xxy

dx

=--

oleObject38.bin

image40.wmf
2

11

2

xC

yx

=++

oleObject39.bin

image41.wmf
3

y

oleObject40.bin

image2.wmf
(

)

gx

image42.wmf
(

)

0

yx

=

oleObject41.bin

image43.wmf
0

y

=

oleObject42.bin

image44.wmf
constant

y

=

oleObject43.bin

image45.wmf
(

)

32

29

xxx

=-

oleObject44.bin

image46.wmf
(

)

(

)

222

2909330

3

xxxxxx

=-®=-®+-=®

±

=

oleObject45.bin

