FACTORING AND THE BINOMIAL THEOREM

Factoring converts expressions written as terms into equivalent expressions written as factors .	
GCF method*:	$3x^5 - 8x^6 = \underline{x^5(3-8x)}$; but compare/contrast with $3x^{-5} - 8x^{-6} = \underline{x^{-6}(3x-8)}$. [†]
Grouping method :	$3x^{2} - 5x - 12x + 20 = x(3x - 5) - 4(3x - 5) = (3x - 5)(x - 4)$
"ac" method:	$\begin{cases} 3x^2 - 17x + 20: & ac = (3)(20) = 60; \text{ factors of } 60 \text{ are } (\pm 1) \cdot (\pm 60), (\pm 2) \cdot (\pm 30), (\pm 3) \cdot (\pm 20), \\ (\pm 4) \cdot (\pm 15), (\pm 5) \cdot (\pm 12), (\pm 6) \cdot (\pm 10); \text{ the pair } (-5) \& (-12) \text{ add to } b = -17, \\ \text{so break up } 3x^2 - 17x + 20 \text{ into } 3x^2 - 5x - 12x + 20; \text{ finish by using the grouping method.} \end{cases}$
Special cases:	Difference of squares: $a^2 - b^2 = \underline{(a+b)(a-b)}$
	Sum of squares: $a^2 + b^2 = \underline{\text{prime}}$ (cannot be factored without <i>i</i>) [‡]
	Sum/diff. of cubes: $a^3 \pm b^3 = \underline{(a \pm b)(a^2 \mp ab + b^2)}$ (\mp means <i>reverse sign</i> between <i>a</i> & <i>b</i>)

The binomial theorem allows large powers of binomials to be determined without tedious FOILing.

General expansion for whole-number exponents *n*:

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} = \binom{n}{0} a^{n} + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^{2} + \dots + \binom{n}{n-1} a b^{n-1} + \binom{n}{n} b^{n}$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ and $n! = (n) \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (3) \cdot (2) \cdot (1)$. Note: $n! = n \cdot (n-1)!$ for $n \ge 1$, so $\underline{0! = 1}$.

Whole-number *n*: Let
$$a = 3x$$
, $b = -2y$, and $n = 4$. Then $(3x - 2y)^4 = [3x + (-2y)]^4 = \sum_{k=0}^4 \binom{4}{k} (3x)^{4-k} (-2y)^k$

$$(3x-2y)^{4} = \binom{4}{0}(3x)^{4-0}(-2y)^{0} + \binom{4}{1}(3x)^{4-1}(-2y)^{1} + \binom{4}{2}(3x)^{4-2}(-2y)^{2} + \binom{4}{3}(3x)^{4-3}(-2y)^{3} + \binom{4}{4}(3x)^{4-4}(-2y)^{4}$$

$$(3x-2y)^{4} = \frac{4!}{0!4!}(3x)^{4} + \frac{4!}{1!3!}(3x)^{3}(-2y) + \frac{4!}{2!2!}(3x)^{2}(-2y)^{2} + \frac{4!}{3!1!}(3x)^{1}(-2y)^{3} + \frac{4!}{4!0!}(-2y)^{4}$$

$$(3x-2y)^{4} = \frac{4!}{4!}(3)^{4}(x)^{4} + \frac{4\cdot3!}{1\cdot3!}(3)^{3}(x)^{3}(-2y) + \frac{4\cdot3\cdot2!}{2\cdot2!}(3)^{2}(x)^{2}(-2)^{2}(y)^{2} + \frac{4\cdot3!}{3!1}(3)^{1}(x)^{1}(-2)^{3}(y)^{3} + (-2)^{4}(y)^{4}$$

$$(3x-2y)^{4} = \underbrace{81x^{4} - 216x^{3}y + 216x^{2}y^{2} - 96xy^{3} + 16y^{4}}{(n)}$$

$$(n)$$

$$(n$$

Handy identities:

$$=1; \quad \binom{n}{1} = n; \quad \binom{n}{2} = \frac{n(n-1)}{2}; \quad \binom{n}{3} = \frac{n(n-1)(n-2)}{3!} \text{ (valid for all } n \neq 0 \text{)}$$

Extension formula for negative or rational *n*:

For negative or rational *n*, the factorials cannot be computed. However, the **handy** identities above allow us to approximate the sum with the first few terms if $b \ll a$: $(a+b)^n \approx a^n + na^{n-1}b + \frac{n(n-1)}{a^{n-2}b^2} + \frac{n(n-1)(n-2)}{a^{n-3}b^3} + \dots$ (terms never end)

$$2 \qquad 6 \\ 1.05^{-3/8} = (1+0.05)^{-3/8} \approx (1)^{-3/8} + \left(-\frac{3}{8}\right)(1)^{-11/8}(0.05) + \frac{\left(-\frac{3}{8}\right)\left(-\frac{11}{8}\right)}{2}(1)^{-19/8}(0.05)^2 + \dots \\ 1.05^{-3/8} \approx (1) - \left(\frac{3}{8}\right)(0.05) + \frac{\left(\frac{33}{64}\right)}{2}(0.05)^2 = 1 - \left(\frac{3}{8}\right)(0.05) + \left(\frac{33}{128}\right)(0.0025) \approx \underline{0.981894} .$$

 $\left(0 \right)$

[†] It is always the *smallest* power of each variable or parentheses that is factored out, regardless of whether it is positive or negative.

^{*} *Always* try the GCF method *before* trying any of the other methods.

[‡] If we allow for complex numbers, then $a^2 + b^2 = (a + ib)(a - ib)$. However, in this course we will only deal with real numbers.

[§] By comparison, a calculator gives $1.05^{-3/8} \approx 0.981870$. Above, we set a = 1, b = 0.05, and $n = -\frac{3}{8}$, and used the extension formula.

Problems: Work on another sheet of paper and *turn in* with your other homework before the first exam. Show all steps. Solve problems 1–5 using factoring methods only, and problems 6–10 using the binomial theorem or approximations.

- 1. Factor as completely as possible: $9x^2 36y^2$.
- 2. Factor as completely as possible: $4x^2 22x 42$. Do not solve for x; just show your parentheses.
- 3. Factor as completely as possible: $x^3 5x^2 6x + 30$. Do not solve for x; just show your parentheses.
- 4. Factor as completely as possible: $x(2x-5)^{-3/2} 4x^2(2x-5)^{-5/2}$. Note that the parentheses are very similar.
- 5. Use the difference-of-squares formula in reverse to compute the product 87×93 *without* using a calculator or the usual multiplication algorithm. <u>Hint</u>: (90-3)(90+3) has the same structure as (a-b)(a+b). After you finish, compute 87×93 *with* a calculator and note whether the results are comparable.
- 6. Use the binomial theorem to find the *complete* expansion of $(x + y)^6$.
- 7. Use the binomial theorem to find the *complete* expansion of $(4x-7y)^5$. (See Whole-number *n* on the front of this sheet for a similar example.) Be cognizant of how the minus sign will affect the result (treat it as a -1 and raise it to even or odd powers). Do not be intimidated by the five-digit coefficients you may obtain (use your calculator).
- 8. Estimate the value of 5.1^4 without using a calculator. Write only the *first three terms* of the binomial expansion of $(a+b)^4$, then substitute a = 5, b = 0.1, and n = 4, and multiply or add the resulting numbers by hand. Compare with the actual result obtained from a calculator and note whether the results are comparable.
- 9. Estimate the value of $1.02^{-1/2}$ without using a calculator. Write only the *first three terms* of the binomial expansion of $(a+b)^{-1/2}$ (use the **handy identities** on the front of this sheet in place of the binomial coefficients, since you can't compute the factorials here). Then substitute a = 1, b = 0.02, and $n = -\frac{1}{2}$, and multiply or add the resulting numbers by hand. <u>Hint</u>: $0.02^2 \neq 0.04$; think of this as $\frac{2}{100} \cdot \frac{2}{100}$ and then convert the fractional product back to decimal. Compare with the actual result obtained from a calculator; are they close?
- 10. (Optional extra credit) In the study of special relativity, velocities are frequently designated using the Greek letter β (beta). If a 24th century starship were to travel at 95% of the speed of light, then $\beta = 0.95$; at 99.9% of the speed of light, $\beta = 0.999$. (β has no units; if you want the speed ν in km/s, use $\nu = \beta c$, where *c* is the speed of light.) As objects approach *c*, relativity predicts that their masses increase; another Greek letter γ (gamma) is used to represent the mass increase, relative to the original mass at rest (if $\gamma = 2$, the object's speed is so great that its mass has doubled, compared to what it was at rest). The exact formula to obtain γ at any speed turns out to be $\underline{\gamma = (1 \beta^2)^{-1/2}}$. Typical NASA interplanetary probes of the early 21st century traveling at 30 km/s have a very small $\beta \approx 0.0001$, so their relativistic mass increase is quite small. (At 30 km/s, you could fly from LA to New York in well under three minutes, yet this speed is still tiny compared to *c*.)
 - (a) Verify, by direct substitution, that for an object at rest ($\beta = 0$), γ is exactly equal to 1.
 - (b) Find, by direct substitution, what value of β would have to be achieved to double the mass of an object (you should obtain a square root). Calculate the decimal value of this square root; verify that $\beta < 1$.
 - (c) Use the *first two terms* of the binomial expansion (employ the **handy identities**, not factorials) to show that for a "slow" NASA interplanetary probe, a good approximation for γ is $\gamma \approx 1 + \frac{1}{2}\beta^2$. (Since $\beta \ll 1$, expand $(a+b)^n$ using a=1, $b=-\beta^2$, and $n=-\frac{1}{2}$, but *stop* after the first two terms.)
 - (d) Use the result of part (c) to estimate the *numerical* value of γ for a typical early 21st century interplanetary probe. Do *not* round the result (use all the significant figures available on your calculator display). Provide a brief interpretation of your answer (what does it say about the mass of the NASA probe while it is in motion?).