BASIC ALGEBRA REVIEW

Assume that letters such as a, b, x, y represent real numbers, unless otherwise specified.
I. Subsets of the real numbers: Integers include whole numbers and their negatives. The rationals include all integers AND all fractions, and have repeating decimals. Irrationals (e.g., $\pi, \sqrt{2}$, etc.) include all other real numbers and have non-repeating decimals. A real number is either rational or irrational but not both.
II. Order: $a<b$ means that a is located to the left of b on the real number line; $a \leq b$ means that either a is to the left of b, or a and b coincide. 0 is greater than all negative numbers, and less than all positive numbers.
III. Absolute value: $|a-b|$ is the distance (on number line) from a to b, disregarding direction (so the result of an absolute value is always non-negative). If $a>b$, then $|a-b|=a-b$; else $|a-b|=-(a-b)=b-a$. If $b=0$, then $|a-0|=|a|$ is the distance from 0 to a. Watch negative signs closely; $|-3|=3$ but $-|3|=-3$.
IV. Exponents: $a^{0}=1$ for $a \neq 0$. Change negative exponents to positive by exchanging the position of the associated factors from numerator to denominator or vice-versa; e.g., $\frac{2^{-6} a^{-3} b^{2}}{c^{4} d^{-5}}=\frac{b^{2} d^{5}}{2^{6} a^{3} c^{4}}$ (note: do not exchange any factors that initially have positive exponents!). Other rules: $a^{m} \cdot a^{n}=a^{m+n} ;\left(a^{m}\right)^{n}=a^{m n}$; $\frac{a^{m}}{a^{n}}=a^{m-n} ;(a b)^{m}=a^{m} b^{m} ;\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$. Fractional exponents are really radicals: $a^{m / n}=\sqrt[n]{\left(a^{m}\right)}=(\sqrt[n]{a})^{m}$.
V. Radicals (inverses of exponents): If $6^{3}=216$ then $\sqrt[3]{216}=6$ (read "the cube root of 216 equals 6 "; note that the same three numbers $6,3,216$ appear in both equations, but in a different order). The small 3 above the radical is the index; the 216 inside the radical is the radicand. If the index is 2 , it is usually not written; thus $\sqrt{25}=5$. Simplify radicals when possible by factoring; for a cube root, any group of 3 identical factors is moved outside the radical and compressed into one factor; for fourth roots, any group of 4 identical factors is moved and compressed, etc.; e.g., $\sqrt[3]{54 x^{4}}=\sqrt[3]{2 \cdot 2 \cdot 2 \cdot 3 \cdot \underline{x \cdot x \cdot x} \cdot x}=2 x \cdot \sqrt[3]{3 x}$.
VI. Operations involving radicals: Product $\sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{a}$; quotient $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$; sum/difference $a \sqrt[n]{c} \pm b \sqrt[n]{c}=(a \pm b) \sqrt[n]{c}$ (similar to combining like terms); rationalizing denominators (one term) $\frac{a}{\sqrt{b}}=\frac{a}{\sqrt{b}} \cdot \frac{\sqrt{b}}{\sqrt{b}}=\frac{a \sqrt{b}}{b}$; rationalizing denominators (two terms, using conjugate of denominator) $\frac{a}{b \pm \sqrt{c}}=\frac{a}{b \pm \sqrt{c}} \cdot \frac{b \mp \sqrt{c}}{b \mp \sqrt{c}}=\frac{a(b \mp \sqrt{c})}{b^{2}-c}$ or $\frac{a}{\sqrt{b} \pm \sqrt{c}}=\frac{a}{\sqrt{b} \pm \sqrt{c}} \cdot \frac{\sqrt{b} \mp \sqrt{c}}{\sqrt{b} \mp \sqrt{c}}=\frac{a(\sqrt{b} \mp \sqrt{c})}{b-c}$; if an expression combines different indices (e.g., a cube root times a fourth root), convert radicals to fractional exponents and use exponent rules to simplify (see IV above); result may be converted back to radicals afterwards.
VII. Factoring polynomials: Simplify like terms (if any) and rewrite in descending-powers order. Then try methods in the order listed: (1) GCF; (2) grouping (for four or more terms); (3) difference of squares, or sum/difference of cubes (for certain binomials); and (4) trinomial ("ac") method. It may be necessary to apply multiple methods (or repeatedly apply a single method) within a single expression, e.g., $x^{4}-16=\left(x^{2}+4\right)\left(x^{2}-4\right)=\left(x^{2}+4\right)(x+2)(x-2)$; the difference-of-squares method applies twice.

